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ABSTRACT 

 

Data provenance represents a collection of metadata on the origin and history of data. In 

scientific workflows, this metadata is essential for operational support of scientific 

experiments. The amount of provenance data generated from scientific workflow 

executions grows exponentially through time, becoming infeasible for scientists to 

manually analyze its content. Thus, mechanisms for extracting and modeling the 

knowledge implicit in provenance data are demanding. Due to the diversity and 

flexibility inherent to scientific experimentation scenarios, declarative models are 

potentially adequate for the task. However, they typically do not consider data 

attributes, which would enrich its embedded knowledge with relevant information such 

as parameter values used in each workflow instance. A classification model may fill this 

gap. This work proposes an approach to automatically learn both declarative and a 

classification models from provenance data, and combine them into a unique view. This 

proposed approach was evaluated on two real scientific experiments scenarios on the 

domain of text mining and of Evapotranspiration estimation. 

Keywords: data-aware, declarative model, provenance data, scientific workflow 
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RESUMO 
 

A proveniência de dados representa uma coleção de metadados sobre a origem e 

histórico dos dados. Em workflows científicos, este metadados é essencial para o apoio 

operacional de experimentos científicos. A quantidade de dados de proveniência 

gerados a partir de  execuções de workflows científicos cresce exponencialmente ao 

longo do tempo, tornando-se inviável para os cientistas analisar manualmente o seu 

conteúdo. Assim, mecanismos para extrair e modelar o conhecimento implícito nos 

dados de proveniência são demandados. Devido à diversidade e flexibilidade inerente 

aos cenários de experimentação científica, modelos declarativos são potencialmente 

adequados para esta tarefa. Entretanto, eles tipicamente não consideram atributos de 

dados, o que poderia enriquecer seu conhecimento incorporado com informações 

relevantes, tais como os valores dos parâmetros utilizados em cada instância do 

workflow. Um modelo de classificação pode preencher esta lacuna. Este trabalho propõe 

uma abordagem para aprender automaticamente tanto modelos declarativos e de 

classificação a partir de dados de proveniência, e combiná-los em uma única visão. Esta 

abordagem proposta foi avaliada em dois cenários reais experimentos científicos no 

domínio de mineração de texto e de estimativa da evapotranspiração. 

Palavras-chave: data-aware, modelo declarativo, dados de proveniência, workflow 

científico 
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Chapter 1 – Introduction 

 This chapter introduces the topics that motivated the research. The problem 

under analysis is characterized, the hypothesis is established, research goals defined and 

the method used explained. 

1.1  Motivation and Problem Characterization 

 Scientific experimentation is a method applied in many fields of science, such 

as: physics, chemistry, biology, bioinformatics, astronomy, cosmology, meteorology, 

oceanography and agriculture (CUEVAS-VICENTTÍN, 2012; MEDEIROS, 2011). 

 Scientific experimentation is an interactive process, triggered by questions about 

an observed phenomenon, followed by hypothesis development and test executions 

using several variations of the studied scenario. The scientist fine-tunes the experiment 

by modifying tasks and parameters until their hypothesis has been accepted, refuted or 

modified, and process is finished (ZENG et al., 2011). Scientific learning is an iterative 

process, which begins with the current scientific knowledge and then chooses a theory 

to test or explore (SELTMAN, 2015). 

 A Scientist or a research team may use a Scientific Workflow Management 

System (SWfMS) to support the execution of scientific experiments in data-flow 

scenarios modeled as workflows, varying input data, parameters, or algorithms. SWfMS 

(OLIVEIRA et al., 2010). SWfMS supports scientist with construction of new 

experiments, re-execution, documentation, reuse and provenance management 

(MEDEIROS, 2011). 

 The historical data generated during the execution of scientific workflows is 

named retrospective provenance data. It encompasses information about activities, 

agents, execution timestamps, parameters, and entities (LIM et al., 2010), so as to 

answer important questions regarding the experiment rationale, such as what activities 
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were performed by an agent in a time period, what are the input parameters that led to 

the best results, or which data artifacts were derived. The varying range of each 

parameter is very important in some experiments, since the scientist can have different 

results depending on the chosen parameter, so, it is valuable information when 

analyzing workflow provenance data. 

 Additionally, prospective provenance data includes the abstract workflow 

specification for a particular scientific experiment, which may be specified, detailed, 

and then executed by means of a workflow engine (LIM et al., 2010). In general, 

prospective provenance data is procedural and imperative; i.e., requires the prediction of 

all possible paths (VAN DER AALST et al., 2009). 

 Both retrospective and prospective views are important to manage, understand, 

and reproduce experiments (DEELMAN; CHERVENAK, 2008; LIM et al., 2010) and 

therefore should be carefully and constantly analyzed by the scientist when evaluating 

past executions and planning future executions. 

 However, the amount of provenance data generated from scientific workflow 

executions grows exponentially through time, becoming infeasible for scientists to 

manually analyze or evaluate its content. Moreover, it is essential to identify useful 

information (CUEVAS-VICENTTÍN et al. 2012) based on user-requirements. 

Therefore, automatic mechanisms for provenance data analysis are demanding. 

 On the other hand, Process Mining is an advanced technique to automatically 

discover process models from data logs (MAGGI et al., 2011). As such, it may be 

considered a powerful technique for provenance data analysis in scientific experiment 

scenarios, where the data log is constituted by the set of workflow instances records. 

Typically, the data log is configured by the scientist to register relevant provenance 

data, as well as the results reflecting how well the result of each workflow instance 

achieved the experiment objectives (VAN DER AALST et al. 2012; TERUEL et al., 

2014). In our work, the experiment objectives and logged relevant provenance data 

constitutes user-defined requirements. 

 There is a plethora of process modeling languages, some of them used to explicit 

a procedural view of the process in a imperative model (such as BPMN, Epics, Petri 

nets, BPEL, UML activity diagrams (VAN DER AALST et al, 2012)), and others able 

to explicit a declarative perspective of it [such as DCR graphs and Declare (MAGGI et 

al., 2011)]. Although it is possible to use both perspectives when representing a 

workflow (PESIC et al., 2010), declarative models are more flexible than imperative 
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models and are thus recognized as being more adequate to explicit valuable knowledge 

that may be embedded within scientific experiment provenance data (VAN DER 

AALST et al., 2009). Flexible and procedural process model are not exclude each other. 

It is possible use different paradigms in order to provide flexibility in workflow (PESIC 

et al., 2010). 

 However, declarative models are not typically designed to capture data aspects 

of a process (KNUPLESCH et al. 2013; MAGGI et al. 2013), which is of specific 

importance to capture implicit knowledge about parameters variation during a scientific 

experiment. This issue is reinforced by the Process Mining Manifesto, which claims that 

combining process mining with other types of analysis is a challenge (VAN DER 

AALST et al. 2012). A data-aware declare model can be more accurate, therefore, 

providing more reliable information to users. 

 Given the facts stated above, the problem under analysis in this work can be 

defined as: How to learn a model that combines data-aware aspects with declare 

constraints based on provenance data?  

1.2  Hypothesis and Solution Proposal 

 The hypothesis guiding this research is stated as: IF  declarative constraints and 

attribute data rules are combined, THEN  more accurate models are discovered from 

provenance data. 

 We address the given problem by proposing an approach that captures both data 

aspects and workflow rules of a scientific experiment by applying process mining 

techniques combined with classification techniques on top of its provenance data. The 

approach learns a model that comprehends and inter-relates declarative rules and data-

aware rules learned through declare miner and decision tree algorithms, respectively. 

Provenance data used for mining is based on user predefined requirements, i.e., metrics 

that will provide information about whether each instance complies or not to the user 

quality requirements. The resulting combined model, a data-aware declarative model, 

provides operational support to have more accurate information about the experiments, 

e.g., a valuable insight for scientists in understanding the main characteristics of their 

experiments that led to successful and unsuccessful workflow instances. A successful 

workflow instance is the one that finished its execution with no errors, and which results 

met all user-defined quality requirements. This approach supports scientists to plan 
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future executions or performing conformance checks of semantic constraints in 

workflow activity.  

1.3 Research Goal 

 The contribution of this dissertation is to present an approach to learn and 

represent a data-aware declarative model in the context of scientific experiments. We 

also provide the formal semantics of data-aware declare constraints, extended from the 

original declare templates (MAGGI et al., 2011). 

1.4 Research Methodology 

 The scientific methodology we followed in this research consisted of the 

following steps: first, a bibliographic review was conducted aiming at gathering 

information about recent generation of models from provenance data. After that, the 

motivation and problem were defined, with a hypothesis and set of goals being 

formulated to guide the research. The third step comprised the proposal specification, 

architectural design [in which a relational schema for the provenance dataset was 

designed as an extension to the PROV-DM metamodel (MOREAU; MISSIER, 2013), 

and implementation. The proposal was evaluated twofold. First, an exploratory case 

study was conducted using a data mining experiment as a scenario. This study attested 

the feasibility of our proposal, the correctness of our implemented architecture and 

gathered preliminary results from the chosen data- and process- mining algorithms. In 

addition, an experiment was conducted in the domain of evapotranspiration estimation. 

In this second scenario, the resulting data-aware declarative model was quantitatively 

analyzed using compliance verification metric against the original process model, to 

verify the research hypothesis. 

1.5 Document Structure 

 This dissertation is structured into 6 chapters besides this Introduction. Chapters 

2 and 3 present important concepts for understanding our approach, which is presented 

in Chapter 4 and evaluated in Chapter 5. Related Works are presented in Chapter 6. 

Finally, Chapter 7 concludes the paper and provides some future directions. 
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Chapter 2 – Scientific Workflows 

 A scientific experiment may be defined as a set of controlled actions that 

includes variations of tests, and whose results are usually compared to each other to 

accept or refute a hypothesis. This set of actions can be modeled as a scientific 

workflow, and each different workflow execution (trial) is named a workflow instance 

(MATTOSO et al., 2010). Scientific workflows aim to accelerate scientific advances 

through task automation, scaling, simulation, etc (CUEVAS-VICENTTÍN et al. 2012). 

 The execution of one workflow is a part of life cycle of the scientific experiment 

by a SWfMS (MATTOSO et al., 2010). Beyond the execution phase, there are more 

three phases: composition, configuration and analysis (Figure 1). Scientists draw up 

specifications in the composition phase of the experiment, stating which programs 

should be implemented and which are data dependencies between them. The next step is 

the configuration phase; in this moment computing resources are mapped for 

performing data transfer and processing; and workflow monitoring. Next, in analysis 

phase the data are available for the scientist check the experiments results. Scientists 

will draw conclusions based on query, visualizing and analyzing the data (OLIVEIRA, 

2012). 

 Scientists can execute different programs in a flow of activities. These activities 

are performed in chain and they produce data as input to other activity. Furthermore, 

variations occur input data and parameters, like when then experiment demanded 

parameter sweep or loading different datasets. In other words, a scientific workflow W 

is represented by four elements (A, Pt, I, O), where: A is a chain of activities {a1,a2,a3, 

…, an}; Pt is a set parameters of A {pt1, pt2, pt3, …, ptm}; I is a set of data inputs {i1,i2, 

i3, …, ir}; and O is a set of output data {o1, o2, o3, os}(OLIVEIRA et al., 2010). For 

example, a data mining experiment is modeled such a scientific workflow W. W has 

activities {a1, a2, a3, a4} where a1=”data loader”, a2=”data pre-processing”, 

a3=”algorithm execution” and a4=”data pos-processing”. These activities are performed 
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against in different inputs {i1,i2, i3, …, is} and parameter values {pt1, pt2, pt3, …, ptm} up 

to the experiment exploration be finished and the output data O achieves the expected 

result (OLIVEIRA et al., 2010). 

 

 

Figure 1 – Scientific Experiment Life Cycle (Adapted from OLIVEIRA, 2012) 
 
 Many real-world scenarios may be expressed as workflows. Complex workflows 

require a level of abstraction to help scientists express their experiments. This 

abstraction is offered by Scientific Workflow Management System (SWfMS) that 

model, execute, and monitor workflows (OLIVEIRA et al., 2010). SWfMS supports 

scientists in planning different scenarios for experimentation, considering variations on 

input data, parameters, and algorithms. They can offer: run-time tasks management, 

resource capabilities, task scheduling, data provenance management, data transfer, and 

monitoring tasks (OLIVEIRA et al., 2010). Examples of SWfMS are Kepler 

(ALTINTAS et al. 2004), VisTrails (CALLAHAN et al., 2006), Taverna (HULL et al., 

2006), and Chiron (OGASAWARA et al., 2013). There are other solutions such as 

SciCumulus, which is a middleware to orchestrate scientific workflows through SWfMS 

in distributed and parallel environments, such as workflow executions in cloud 

environments (OLIVEIRA et al., 2010). 

 Computational support for scientific workflows through SWfMS is of 

particularly importance for processes that are repeatedly executed and for experiments 
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that explore many variations on workflow instances, since these scenarios are too 

complex for humans to handle.  

 In general, SWfMS provides a procedural model to specify the workflow design. 

Despite this operational support, scientific users typically desire to have flexibility, to 

do whatever they want experiment without a tight control. Flexibility is a limitation of 

SWfMS, sometimes; it is difficult to provide both flexibility and support, because of 

conflicting requirements. So, Information System should provide balance between 

flexibility and support. In the Figure 2, shows in right side the part of classical 

workflow management systems like a SWfMS (PESIC et al., 2010). 

 On other hand, the left-side emphasis on flexibility and user empowerment. It is 

difficult to visualize all possible paths and the process is driven by user decisions rather 

than system decisions. Groupware systems focus on supporting human collaboration, 

and co-decision making. They need flexibility for unpredictable result, so the expert can 

react to exceptional situations and execute the workflow in the different manner (PESIC 

et al., 2010). 

 

 
Figure 2 - Flexibility versus Support (PESIC et al., 2010). 

 

2.1 Data Provenance 

 Data provenance manages a collection of metadata on data origin and history. In 

scientific workflows, this metadata is essential for providing an operational support for 

scientific experiments. It comprises information about entities (input data, files, etc), 
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activities, agents, and relationship among them. Additionally, the timestamp, parameter 

values, input artifacts and delivered artifacts for each activity is kept track of as 

provenance data (GIL et al., 2007)(ZENG et al., 2011).  

 Provenance is perceived as a crucial component of scientific workflow systems, 

which helps scientists to ensure the reproducibility of their scientific analysis and 

processes, publication and contribution between coworkers (GIL et al., 2007), i.e., the 

lineage and  history of results (CUEVAS-VICENTTÍN et al., 2012). Provenance has 

been studied in various areas, such as scientific processing and databases (CHENEY et 

al., 2009), as well as in SWfMS (LIM et al., 2010). It can be queried, analyzed, 

visualized, mined for understanding of experiment result or workflow debug. 

(CUEVAS-VICENTTÍN et al., 2012) (ZENG et al., 2011). 

 Different data provenance systems have their own representation model. In order 

to provide interoperability among different systems, a family of specifications has been 

defined by W3C as a standard for provenance representation, named PROV 

(MOREAU; MISSIER 2013). Within PROV, the PROV-DM (PROV Data Model) is 

the conceptual data model specification. PROV-DM represents the relations between 

the entities, agent, activities, and their collection, as well as the time at which they were 

created (MOREAU; MISSIER 2013). Figure 3 illustrates PROV-DM as a UML 

diagram; the classes and the relationships among them describe the use and production 

of entities by activities, which may be influenced by agents and the relationships among 

them.  
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Figure 3 - PROV-DM: General overview (MOREAU; MISSIER 2013). 

2.2 Scicumulus 

 SciCumulus is a middleware used to distribute, control and monitor parallel 

execution of scientific workflows on top of a SWfMS (such as VisTrail) in a cloud 

environment. SciCumulus orchestrates the workflow parallel execution over a 

distributed set of virtualized machines. SciCumulus has a distributed architecture 

composed by four-layer elements: desktop layer that dispatcher workflow; distribution 

components (execution broker, parameter sweeper, encapsulator, scheduler) that 

manages activities; execution modules (instance controller, configurator, executor) that 

perform workflow programs; and data layer (data acquisition agent, provenance 

database, shared filesystem) that manages data (Figure 4) (OLIVEIRA, 2012). 

 Scicumulus hides the complexity of the workflow parallelism in cloud 

environments from scientists and collects distributed provenance data following the 

Many Tasks Computing (MTC) paradigm, which is based on several computing 

resources used over short time periods in order to accomplish several computational 

activities. SciCumulus provides two different kinds of parallelism functionalities: 

parameter sweep and data parallelism. Following the definition of a workflow W ({ai}, 
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…{aj} previously described; parameter sweep is a parallelism functionality in which 

each activity ai is performed using configured parameters ptij, and for each parameter ptij 

an instance of ai is performed. Data parallelism, on the other hand, may be depicted as 

simultaneous execution of an activity ai that consumes a subset dij of the input data for 

ai. For each input subset dij, one instance of ai is executed using dij as its input. In other 

words, the same activity is executed with different input data.  

 Scicumulus captures provenance data dynamically, during the execution of the 

scientific workflow. Therefore, the scientist is able to gather and query provenance data 

during workflow execution and analyze the experiment results. Provenance data is 

inserted into a W3C PROV-compliant database and persisted in PostgreSQL RDBMS 

(Relational Database Management System) (OLIVEIRA et al., 2010) (COSTA et al., 

2013). 

 

Figure 4 - Scicumulus Conceptual Architectural (Adapted from OLIVEIRA, 2012) 
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Chapter 3 – Declarative Process Mining 

 Process mining provides a link between data mining and BPM (Business Process 

Management). It is an approach for discovering, monitoring and improving real 

processes through extracting knowledge from event logs acquired by information 

systems. Process mining may be applied to automated process discovery; conformance 

checking (comparing model and logs); simulation models construction; and history-

based recommendations (VAN DER AALST et al., 2012) 

 There is a plethora of process modeling languages, which may be grouped into 

imperative [such as BPMN (WHITE, 2004), Petri nets (MURATA, 1989), UML ADs 

(STOERRLE)] or declarative [Declare (MAGGI et al., 2011), DCR Graphs 

(HILDEBRANDT, 2011)]. While the former models all possible steps of a process, the 

latter focus on the logic that governs interactions between the actions of a process, 

describing what can be done by restricting only the undesired behavior (ZUGAL et al., 

2013).  

 Imperative modeling specifies the procedure of how process has to be executed, 

thus requiring all possible process paths to be explicitly specified in the model before 

the workflow execution. Every new step must be added to the model during experiment 

specification in experiment composition phase. In contrast, declarative process 

modeling does not specify the control-flow of activities a priori. Instead of determining 

all possible process paths, only its essential characteristics are described through rules. 

Adding new constraints to the model limits the number of workflow execution 

alternatives. This way, every execution control flow is possible, as long as it does not 

violate any of the specified constraints (VAN DER AALST et al., 2009). 

 Declarative models describe a process in an “open world”, while procedural 

models is a “closed world”. Figure 5 illustrates the difference among the universe of 

possible, forbidden, optional and allowed paths for a process execution following either 

a procedural model (a more traditional approach) or a declarative model (constraint-

based approach) which enhances flexibility. 
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Figure 5 - Declarative vs. Procedural Models (W.M.P. VAN DER AALST et al., 
2009) 

 

 Flexible models allow increasing the user decision making, moving choices from 

workflow design time to run time. To support users in making decisions, the 

information systems may provide recommendations through process mining techniques. 

These recommendations may depend on explicit domain knowledge, but it is possible to 

learn from a process with past workflow execution and then give to user for insight in 

planning future experiment scenarios. The expert may decide to discard the 

recommendation, but at least some decision support is given. The analysis of workflow 

instances becomes more relevant when experts are not forced to work in a particular 

way (VAN DER AALST et al., 2009).  

3.1 Declare 

 Declare is a process modeling language based on the declarative paradigm. 

Declare maps are interesting in the context of process mining. One can discover Declare 

maps from event logs (extracted from audit trails, transaction logs, and databases) 

without preexisting models and knowledge. Declare provides flexibility mechanisms, 

such as: defer (decide to decide later), change (decide to change model), and deviate 

(decide to ignore model) (VAN DER AALST et al., 2009).  
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 Declare model presents recommendations to users as independent information, 

the users does not compel to follow recommendation. It offers desirability rules to 

execute tasks, re-do tasks that were executed before or even skip tasks that should be 

executed users (PESIC et al., 2007). 

 Declare is an open source (WESTERGAARD; MAGGI, 2011) LTL (Linear 

Temporal Logic) rule collection, which shows the control-flow dependency between 

two activities on finite traces through graphical representation (MAGGI et al., 2103). It 

allows the discovery of non-sequential or coexisting events in the same process 

instance. The language is intended to be understandable for end-users. The LTL 

operator Ο mean “has to hold in the next position of a path”, while operator □ has a 

semantic “has to hold always in the subsequent positions of a path” and operator ♦ 

means “has to hold eventually (somewhere) in the subsequent positions of a path” 

(Table 1) (MAGGI et al., 2011). 

 
Table 1 -  LTL Operator semantics (MAGGI et al. 2011) 

 
Operator Semantics 

Ο 
has to hold in the next position of a path. 

□ has to hold always in the subsequent positions of a path 

♦ has to hold eventually (somewhere) in the subsequent positions 

of a path 

 

 Declare describes a set of constraints which must be satisfied throughout the 

process execution. The constraints are classified in templates in the groups: existence, 

relation, negative relation, and choice (MAGGI et al., 2011). 

 This task of automatically learning a declare model from data is known as 

Declare mining. An implementation for declare mining is available as plug-in in Prom 

tool. It uses constraint templates with a graphical notation and implements semantics 

through operations such as init (A), precedence(A,B), response(A,B), succession(A,B), 

not succession(A,B), chain succession (A,B), co-existence(A,B), among others 

(MAGGI et al., 2011).  

 A relation template states a dependency among two activities. For example, the 

“co-existence(A,B)” template states that if one of the events A or B occurs, the other 

one should also occur. The templates: “chain response”, “chain precedence” and “chain 
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succession” determines that the occurrences of the two activities (A and B) are next to 

each other (MAGGI et al., 2011). Table 2 depicts constraint templates in Declare, along 

with their meaning, LTL semantics, and graphical representation 

 

Table 2 -Declare Constraint Templates (Adapted from MAGGI et al., 2011; BOSE 
et al., 2013) 

 
Constraint Meaning LTL semantic Graphical 

notation 

responded existence if A occurs then  B occurs before or 

after A 

♦A  → ♦B 
 

precedence(A,B) if B occurs then A occurs before B (¬B UA) ∨□ 
(¬B) 

 

response(A,B) if A occurs then eventually B occurs 

after A 

□ (A □  ♦B) 
 

succession(A,B) for A and B both precedence and 

response hold 

response(A,B) ∧ 
  precedence(A,B) 

 

not succession(A,B) if A occurs then B cannot eventually 

occur after A 

□ (A □  ¬ (♦B))  
chain precedence(A,B) if B occurs then A occurs in the next 

position before B 

□ (B → Ο A)  
chain response(A,B) if A occurs then B occurs in the next 

position after A 

□ (A → Ο B) 
  

chain succession(A,B) for A and B both chain precedence 

and chain response hold 

□ (A → Ο B) ∧ 
□ (B → Ο A)  

co-existence(A,B) if A occurs then B occurs before or 

after A 

and vice versa 

♦A ↔ ♦B 
 

alternate response if A occurs then eventually 

B occurs after A without other 

occurrences of A in between 

□ (A → Ο (¬A U 
B)) 

 
 

alternate precedence if B occurs then 

A occurs before B without 

other occurrences of B in between 

(¬B U A) ∨□ 
(¬B) ∧  

□ (B → Ο (¬B U 
A) ∨□ (¬B) 

 

alternate succession for A and B 

both alternate precedence 

and alternate response hold 

alternate  
response(A,B) ∧ 

alternate 
precedence(A,B 

not co-existence A and B 

cannot occur 

together 

¬ (♦A∧♦B) 

not succession if A occurs then 

B cannot eventually occur 

after A 

□ (A → □ ¬ (♦B)) 

not chain succession if A occurs then 

B cannot occur in the next 

position after A 

□ (A → Ο (¬B)) 
 

 

 The existence templates describe a unary relationship and define the cardinality 

or the position of an event in a process instance, such the template init(A) of a activity 

specify the process instances start with activity A. Table 3 shows the existence 

templates with its meaning, graphical notation and LTL semantics. The existence(n,A) 
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specify that A should occur at least n times in a process instance. While, templates of 

the type absence(n+1,A) specify that A should occur at most n times. Templates 

exactly(n,A) indicate that A should occur exactly n times. 

 

Table 3 -Existence Templates (Adapted from MAGGI et al. 2011) 
 

Constraint Meaning LTL semantic Graphical 

notation 

init(A) start with A A 

 
existence(1,A) A should occur at least one time ♦A 

 
existence(n,A) A should occur at least n times ♦(A ∧ Ο 

(existence (n-1, 
A)))  

absence (A) A should occur at most one time ¬ existence (1, 
A) 

 
absence(n,A) A should occur at most n times ¬ existence 

(n+1, A) 

 
exactly(n,A) A should occur exactly n times existence (n,A) 

∧absence (n+1, 
A)  

 

 The figure 6 shows a learned declare model extracted from an ontology process 

(SILVA et al., 2014). The learned rules state that “data translator” activity only occurs 

after “data loader” activity, “apply terminological similarity metric” and “apply 

structural similarity metric” co-exist, meaning that if the scientist plan to apply a 

terminological metric in a future scenarios, the structural metric should also be applied 

and “apply semantic similarity metric” activity cannot co-exist with “apply structural 

similarity metric”, meaning that the scientist should plan future scenarios choosing 

between applying structural or semantic metrics, but not both. 

 

 
Figure 6 - Declarative model of scientific experiment of ontology matching (SILVA 

et al. 2014) 
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 A discovered Declare map has many constraints that are redundant, it may be 

pruned by selecting only those constraints that are the most interesting for the user, so, 

we can simplify the model without lose meaning. Figure 7 presents a declare constraint 

hierarchy, the solid arcs indicate which constraints dominate other constraints. A 

constraint can be discarded if there is a directed path to it from another constraint 

involving the same event. For example, a constraint succession(A, B) is redundant if a 

stronger constraint chain(A,B) holds. The dashed arcs indicate constraints that are 

transitive (MAGGI et al., 2013b).  

 

 
Figure 7 - Declare constraint hierarchy (MAGGI et al., 2013b) 

 
 
3.2 Validation declarative models  
 
 It is not trivial to evaluate a declarative model, because is no defined to point 

precisely deviations and quantify discrepancies in a model with absence notion of state. 

Mainly, in order to analyzing the compliance of a constraint-base model some 

constraints can be vacuously satisfied. BURATTIN et al. (2012) introduce the notion of 

healthiness of a trace, based on the concept of activation of a declare constraint. 

 A constraint activation occurs when an occurrence of activity forces an behavior 

in process in relation of other activity. For example, if a constraint not co-existence(A, 

B) is activated, means that the occurrence of activity A forces not occurrence of the 

activity B. A constraint activation may be fulfilled or violated, following the constraint 

example above, if activities A and B did not occur in same process instance, then the 

activation was fulfilled. However, if activities A and B happened in same process 

instance, then the constraint was violated. The metric that measures the quantity of 
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fulfilled constraint activation is called fulfillment, on other hand; violation is a metric 

that measures the quantity of violated constraint activation. The ratio of fulfillment of a 

constraint over total number of activation defines the metrics fulfillment ratio and 

violation ratio (BURATTIN, 2012; MAGGI et al., 2013). i.e.: 

 

fulfillment ratio = Σ fulfillment / activations 

 

violation ratio = Σ violation / activations 
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Chapter 4 – Proposed Approach 

 In this chapter, we describe our proposed approach for combining the data-

attribute perspective with the control-flow perspective, resulting in a data-aware 

declarative model discovered from provenance data of scientific experiments. Thus, 

scientists can have the balance among flexibility and support in execution of scientific 

experiments. Due to the flexibility, the learned data-aware declarative model provides 

insight to scientists when planning new workflow scenarios, since they will be faced 

with combinations of parameters and activities that frequently resulted in successful 

workflow instances, based on user-requirements and executed in a traditional SWfMS. 

Moreover, the scientists will have in their hands the operational support provided by a 

SWfMS (with predefined flow of activities) and a flexible declarative model to aid them 

in making decisions to explore new workflow scenarios that tend to be more successful, 

to avoid those scenarios that tend to be unsuccessful, and even to better understand the 

reasons for both.  

Figure 8 shows a high level view of the main components of our proposed 

approach. Initially, the scientists specify their workflow templates and execute several 

scenarios – varying algorithms, parameters and resources – using the conventional 

SWfMS platform that they are used to. Those executions generate provenance data. 

After several executions of workflow, the provenance data collected from historical 

executions is filtered, based on user requirements, generating a new data subset. This 

subset of provenance data is used to automatically build a data-aware declarative model. 

The scientist then analyzes this model and identifies which were the most appropriate 

alternatives for activities and parameter values, fine-tunes the workflow template and 

plans new scenarios based on this information, and finally (re)executes these new 

scenarios. This process is interactive and incremental, until the scientists validates or 

refutes their research hypothesis. 
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Figure 8 - Overview of the main components of the proposed approach 
 
 The second view of the approach (Figure 9) illustrates the three main steps 

proposed by our proposed approach: “User Requirement Definition”, “Workflow 

Execution”, and “Data-aware Declare Model Learning”. The first step (“User 

Requirement Definition”) should be executed by the scientist, and encompasses the 

definition of experiment metric(s). Those metrics represents and operationalizes the user 

requirements on the quality of their scientific workflow results, thus reflecting how the 

results of a particular workflow instance should be evaluated. For example, a metric 

“precision” more than 0.8 can be define the workflow instance quality. The metrics 

should be defined by the scientist, who also is responsible for implementing an activity 

to automate the calculation of each metric, and attach this activity to the scientific 

workflow template. These implemented metrics allow an automatic classification of 

each workflow instance as either being successful or not, based on scientist 

requirements. The metrics defined by the scientist are stored in the provenance database. 

For example, in a data mining experiment the scientist may define precision, recall and 

f-measure as metrics, implement a service to calculate these values, and include a 

workflow activity as the last step of the data mining workflow, invoking this service.  

 In the Workflow Execution step, the SWfMS should be already configured to 

access a PROV-compliant database (extended with the metrics tables we propose). The 
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scientist is responsible for defining workflow scenarios they wants to execute, 

specifying each scenario in the SWfMS and executing each scenario. During each 

execution, an engine implemented on SWfMS collected and stored provenance data in a 

database. For example, in the data mining experiment may be specified and executed on 

top of VisTrails. VisTrails collects the provenance data of each workflow instance, as 

well as its user-defined metrics.  

 The last step, “Data-aware Declare Model Learning”, is the main step of our 

approach, and is detailed in Figure 10. The learning (discovery) process encompasses 

four activities: “Provenance Data Filtering According to Chosen Metrics”, “Data-aware 

Rules Discovery”, “Provenance Data Filtering According to Data-aware Rules” and 

“Data-aware Declarative Model Discovery”, which will be detailed in the following 

sections. 

 

Figure 9 - Proposed Approach Steps. 
 
 
 

 

 
Figure 10 - Data-Aware Declarative Model Learning activities 

4.1 Provenance Data Filtering According to User-Requirements 

 In a detailed view for learning a data-aware declarative model (Fig. 8), the first 

step is “Provenance Data Filtering According to User-requirements”. This activity 

filters the provenance data based on workflow instances whose log contains information 
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about the metrics chosen by the scientist. We extended PROV-DM metamodel to persist 

pre-defined metrics and capture their values. The PROV-DM metamodel provides 

flexibility for not previously defined entities, so it suited for the specification of several 

specific user-defined requirements. Figure 11 shows the extended data model of PROV-

DM, including “User-defined Metric” Entity (blue color), that qualifies objects like 

“Activity” (or even “Collection” of activities) and/or “Entity”. 

 Once the metric is collected for each workflow instance, in this activity the 

workflow instances that satisfy user-requirements are collected, thus filtering 

provenance data to only consider the instances one is interested in analyzing. For 

example, a scientist may be interested in analyzing workflow instances that overcome 

0.8 in precision (due to insights that they may constitute scenarios that will lead to good 

results) or, yet, only instances with precision less than 0.8 (in order to learn which 

scenarios should be avoided). Thus, the provenance data to be mined into the 

declarative model is based on user-requirements which are inserted in a metamodel that 

extends the PROV-DM. 

 

Figure 11 - Extended PROV-DM 
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4.2 Data-Aware Discovery 

 The second step is “Data-Aware Discovery”, which discovers a classification 

model from the provenance data subset produced by the previous activity. The idea is to 

learn data-aware constraints that are recurrently consistent with the instances logged in 

the provenance data. Decision tree was chosen as the classification model, since it fits 

nicely to represent constraint rules. Structurally, each branch in the decision tree 

corresponds to a conjunction of data constraints (in the form <data 

attribute><operator><value>, for example “pα> 2 AND pβ <9”) that filters provenance 

data. The classification algorithm generates a decision tree whose class attribute 

indicates whether the workflow instance is successful or not. Figure 12 depicts a generic 

decision tree.  

4.3 Provenance Data Filtering According to Data-aware Rules 

 The scientist then chooses a branch according to its interest reflected in the class 

attribute. Then, in the third step, “Provenance Data Filtering According to Data-aware 

Rules”, the constraints are represented by this branch are transformed in a set of filters 

that are applied in the provenance database through the use of a SQL query, deriving a 

new provenance filtered data. For example, the query “SELECT case, activity_name, 

start_time FROM activity” is appended with filter “WHERE parameter1>=value AND 

parameter2>=value AND parameterN= “value”. 

 

Figure 12 - Generic Decision Tree learned from Provenance Filtered Data 
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4.3 Data-Aware Declarative Model Discovery 

 The last activity is “Data-Aware Declarative Model Discovery”, which is 

responsible for running an algorithm for declarative model discovering considering the 

provenance filtered data found in third activity. Since the declarative model found was 

learned based on data filtered from data-aware constraints, we call it a data-aware 

declarative model.  

 In order to represent data-aware declarative models, we extended declare 

constraint templates, mentioned in section 3.1, with data-aware constraints. These data-

aware constraints correspond to the decision tree branch chosen by the user. Table 4 

presents the formal semantics of some individual data-aware declare constraints 

templates proposed. In the proposed templates, each constraint <data-

attribute><operator><value> is represented by a term named condi. The conjunction of 

several data constraints condi, … condj , i < j, is represented as  ∧condi j. Therefore, 

∧condi j = condi   ∧ cond…  ∧ condj 

For example, ∧condi j , init(A), response (A,B); it means that if parameter values of i 

to j were satisfied the workflow should start with activity A and activity B occurs 

occasionally after A. 

 The graphical representation for the proposed data-aware declare constraint is 

given as a precedent symbol connected to the declare diagram by an edge labeled 

“∧condi j”. An example using this notation is illustrated in Figure 13. 

 

Table 4 - Data-aware Declare constraints 
 

Data-aware constraint Meaning 

 ∧condi  j  , init(A) if (condi ∧…∧condj) then (start with A) 

 ∧condi  j  , precedence(A,B) 

 

if (condi ∧…∧condj) then  

 (if B occurs then A occurs before B) 

 ∧condi  j  , response(A,B) if (condi ∧…∧condj) then  
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 (if A occurs then eventually B occurs after A) 

∧condi  j  , succession(A,B) if (condi ∧…∧condj) then  

 (for A and B both precedence and response hold) 

∧condi  j  , chain  

precedence(A,B) 

if (condi ∧…∧condj) then  

 (if B occurs then A occurs in the next position before B) 

∧condi  j  , chain response 

(A,B) 

 

if (condi ∧…∧condj) then 

 (if A occurs then B occurs in the next position after A) 

∧condi  j  , chain 

succession(A,B) 

if (condi ∧…∧condj) then  

 (for A and B both chain precedence and chain response 

hold) 

∧condi  j  , co-existence(A,B) if (condi ∧…∧condj) then  

 (if A occurs then B occurs before or after A and vice 

versa) 

 

 

Figure 13 - Data-aware Declare Diagram. 

4.4 Solution Architecture 

 Our proposal is supported by the technological architecture elements and 

artifacts depicted in Figure 14. First, the Provenance Database is created by instantiating 

the extended PROV-DM schema in a relational database management system. In 

workflow design time, the scientist models the workflow template in the SWfMS 
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interface, and includes additional workflow tasks to gather user-defined metrics as 

provenance data. Then, in workflow execution time, an initial set of workflow instances 

is executed, populating the provenance database. A dataset is acquired by executing 

SQL query with filters, next, a decision tree learning algorithm is executed through a 

Data Mining Tool in order to discovery a set of data constraints. Finally, the Declarative 

Miner Tool for discovering a data-aware declare model is executed considering the 

filtered data found by applying the constraints discovered. The steps to send data for 

Data Mining Tool and Declare Miner Tool is made manually by the user. 

 

 

Figure 14 -  Solution Architecture 
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Chapter 5 – Use Scenarios 

 In order to measure the accuracy of the data-aware declare model, there are 

metrics proposed in BURATTIN et al. (2012). These conformance metrics evaluates the 

degree of healthiness of a process trace and of a log, using indicators such as activation, 

fulfillment, violation and conflict for a declare constraint.   

 The “Declare Analyzer” plug-in from the ProM framework was used to quantify 

the degree of adherence of each trace in terms of number of fulfillments and violations 

ratio (BURATTIN et al. 2012). These metrics are percentages of violations and 

fulfillments of the constraints over the total activations (MAGGI et al., 2013b).  

 This chapter describes in detail the evaluation of our proposed data-aware 

declarative model learned on top of provenance data. The evaluation consists of two 

experiments aiming to observe how precise the combined models are. The first is an 

exploratory user scenario data mining experiment for evaluating the potential of 

approach. The second was applied on a real scenario for evapotranspiration estimation. 

5.1  Wish Detection Experiment 

 In this section, we present a use scenario of data mining experiment, specifically 

for classifying training algorithms on the task of detecting wishes in tweets 

(GONÇALVES et al., 2015). The training configuration used the Wish Corpus as 

training data and NLTk 3.0 on Python 2.7.1 as the framework for the implementation of 

the Naive Bayes algorithm. The abstract workflow is depicted in Figure 15 in a BPMN 

diagram. 

 The workflow has eight activities; some of them with varying parameters, such 

as: “corpus” in activity 1, word length in activity 4 and the partition size in activity 6. 

Table 5 depicts the activity name, its description, and parameters. 
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 The modeling and execution of scientific workflow in SWfMS was part this 

work. The workflow template was modeled and executed through the SciCumulus 

SWfMS. Provenance data was collected during workflow executions and stored in a 

PostgreSQL relational database. The experiment was executed in a cloud environment, 

the Amazon EC2 platform, using Linux instances (large server and micro instances). 

 

 

Figure 15 - Wish Detection Workflow 
 

Table 5 – Wish Detection Workflow Activities 
 
Activity 

no. 

Activity 

Name 

Activity 

Description 

Parameter Parameter 

Description 

Domain 

Data 

1 dataset 

loader 

load corpus corpus wish corpus politics,  

products, 

politics_products 

2 dataset 

tokenization 

divide a text into a 

list of sentences, by 

using an 

unsupervised 

algorithm. 

NA   

3 char 

conversion 

convert  all word in 

lower case 

NA   

4 word 

removal 

remove word in 

according to length 

configured in 

parameter lword 

lword length of word to be 

removal 

0-n 

5 stop word 

removal 

remove stop 

words, such as: 

the, is, at, which, 

and on 

NA   

6 k-folder 

partitioning 

partition the 

database in k-

folders 

kfold: 1-n number of fold 

partitioning 

1-m 

7 text mining 

algorithm 

perform an 

algorithm for text 

mining 

NA   

8 metric 

storage 

store metrics of  

workflow instance 

NA   
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 The user-requirements for filtering provenance data were set by the scientist as 

follows: Precision >0.6 was the chosen metric for analyzing workflow instances. 

Therefore, a clause “WHERE metric_name = ’pos-precision’ was appended to SQL 

query to generate a filter provenance data. In order to discover data-aware constraints, 

the Random Tree algorithm from the Weka toolbox (HALL et al., 2009) was chosen as 

classification learning algorithm. Figure 16 depicts the discovered decision tree.  

 

Figure 16 Discovered classification tree 
 
 The leaves with the class attribute values detailed the parameter values achieved. 

In this example, the scientist was interested on evaluating instances with a precision 

greater than 0.6, thus one or more three branches can be considered: 

• ∧condi  j = kfold<=2.5 and lword>=2.5 and corpus= “politcs_products”.  

• ∧condij= kfold>=1.5 and kfold>=2.5 and lword>=2.5 and corpus= “politcs_products”.  

• ∧condi j = kfold>=2.5 and kfold< 43  and corpus= “products”.  

• ∧condij = kfolds >3.5 and kfolds <43 corpus = “politics_products” 

• ∧condij= kfolds>3.5 and kfolds<43 and lword <5 and corpus = 

“policts_products” 
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 So, each of these conditions was appended to a SQL query in a WHERE clause 

for finding the cases that used the selected parameters. An example of SQL query 

considering filters with parameter values is presented below. 

 

SELECT  w.wkfid AS "Case ID",a.tag AS "Activity", 

       a.starttime AS "Start Timestamp", a.endtime AS "End Timestamp" 

FROM parameter p INNER JOIN hactivity a 

 ON (p.actid=a.actid) 

 WHERE kfold <=2.5 AND lword >=2.5 AND corpus = ‘politics_products’; 

 

  

After applying each constraint, the filtered provenance data was sent as input 

data to the Declarative Process Mining Tool. In this use scenario, we adopt 

DeclareMiner plug-in (MAGGI et al. 2011) in ProM tool as the declarative process 

mining tool. 

 Due to simplicity for illustration purposes, the extracted model considered only 

init, succession, chain succession and co-existence declare constraints. The 10 

discovered data-aware declare constraints are described in Table 6. 

 
Table 6 - Data-aware Declare Constraints 

 
Rule1 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ 

DataSetTraining.corpus=politics_products,  

 init (“Dataset Training Loader”) 

Rule2 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ DataSetTrain-

ing.corpus=politics_products,  

 chain succession (“Dataset Training Loader”, “Dataset Tokenization”) 

Rule3 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ DataSetTrain-

ing.corpus=politics_products,  

 chain succession (“Dataset Training Tokenization”, “Dataset Training Char Conversion”) 
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Rule4 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ DataSetTrain-

ing.corpus=politics_products,  

 chain succession (“Dataset Training Char Conversion”,“Dataset Training Word 

Removal”) 

Rule5 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ DataSetTrain-

ing.corpus=politics_products,  

 succession (“Dataset Training Word Removal”,“Dataset Training Special Word 

Removal”) 

Rule6 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ DataSetTrain-

ing.corpus=politics_products,  

 succession (“Dataset Training Word Removal”,“Dataset Training Stop Word Removal”) 

Rule7 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ DataSetTrain-

ing.corpus=politics_products,  

 co-existence (“Dataset Training Special Word Removal”,“Dataset Training Stop Word 

Removal”) 

Rule8 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ DataSetTrain-

ing.corpus=politics_products,  

 succession (“Dataset Training Special Word Removal”,“Dataset Training KFolder 

Partitioner ) 

Rule9 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ DataSetTrain-

ing.corpus=politics_products,  

 succession (“Dataset Training StopWord Removal”,“Dataset Training KFolder Partitioner 

Rule10 

DataSetKFolderPartitioner.kfold>=3.5 ∧ DataSetWordRemoval.lword< 5 ∧ DataSetTrain-

ing.corpus=politics_products,   

 chain succession (“Dataset Training KFolder Partitioner”, “Naive-Bayes Evaluator”) 

 

 The learned data-aware declarative model presents knowledge combining 

constraints on events flow and activities parameters. Figure 17 depicts the extracted 

model (considering only init; chain succession; succession; and co-existence 

constraints) and with data conditions.  



 44  

5.2 Result analysis 

Some of the learned rules may represent common knowledge to the scientist 

(such as the pattern that “Dataset Training Loader” is the initial activity and “Dataset 

Tokenization” activity only occurs after “Data-set Training Loader” activity, meaning 

that dataset tokenization should always successes data loader). Other rule is that after 

“Dataset Training Word Removal”, the scientist can either execute “Dataset Training 

Special Word Removal” or “Dataset Training Stop Word Removal”, i.e., these two 

activities occur after “Dataset Training Word Removal”, these activities co-exist in the 

workflow, i.e., the “Dataset Training Special Word Removal” activity can take place 

before or after “Dataset Training Stop Word Removal”, there is no difference in the 

expected result. 

 Thus, in order to meet user requirements, the scientist can follow the rules 

represented in the combined model, i.e., workflows should be modeled according to the 

events flow and to the set of parameters kfold>=3.5 ∧.lword< 5 ∧ 

corpus=politics.products. 

 The proposed approach was also applied to discover the data-aware declare rules 

that lead to unsuccessful scenarios. We chose the branch that does not meet user 

requirements. With the data-aware constraints kfold<1.5 ∧ lword>=2.5 ∧ 

corpus=politics_products  the extracted model is depicted in Figure 18, we can observe 

that event flow and declare constraints differ when compared to the model found in 

successful scenarios (Figure 17). The scientist may analyze the rules represented in the 

combined model and realize that some activities like “DataSetTrainingStopRemoval” 

are missing. 
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Figure. 17 - Learned Declare Model 

kfold>=3.5 ∧ lword< 5 ∧ 

corpus=”politics.products”  
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Figure 18 - Learned Declare Model (unsuccessful scenarios) 

kfold<1.5 ∧ lword>=2.5 ∧ corpus="politics_products" 
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5.3  Evapotranspiration Experiment 

 In this section, we present an experiment of an evapotranspiration estimation 

scenario. Evapotranspiration is the sum of water evaporation from the soil with the 

transpiration from vegetation which returns to the atmosphere in vapor form. The values 

of evapotranspiration are important in agriculture, especially in soil irrigation activities. 

Thus, the availability of evapotranspiration values allows a better planning of the water 

amount to be irrigated and thus minimize resources use and environmental impacts. 

However, the direct measurement of evapotranspiration is difficult and costly, since it 

requires facilities and special equipments. Thus, the use of knowledge discovery 

techniques was used in this scientific experiment (XAVIER et al., 2015). 

The experiment was done with weather data and showed that some specific 

parameter values combinations presented better results when compared to historical data 

of the estimated evapotranspiration. The data was extracted from Meteorological  

Database for Education and Research (BDMEP) of National Institute of Meteorology of 

Brazil (INMET). This database has had historical series of weather data for several 

locations in Brazil since 2006, collected through measuring stations. These historical 

series contain data evapotranspiration, which were used as input data for the learning 

algorithms. This datasets have the variables: wind speed average, high speed wind 

average, piche evaporation, potential evapotranspiration, total insolation, cloudiness 

average, total precipitation, medium pressure, maximum temperature average, 

compensated temperature average, minimum temperature average, relative humidity 

average. The scientist applied a linear regression technique to measure the degree of 

precision between the historical values and the values obtained by the parameter 

combination. The coefficient of determination, also called R², is a linear approximation 

of the general statistical model. R² varies between 0 and 1, indicating the percentage of 

the observed values that is consistent with the learned model (XAVIER et al., 2015). 

 The workflow has six activities (Table 7); some of them with varying 

parameters, such as: “dataset” in activity 1, “attribute filter” in activity 2, “class” to be 

clean in activity 3, and “mining algorithm” in activity 4. The “coefficient of 

determination” is calculated in correlation compute activity. 

 The modeling of scientific workflow in SWfMS was part this work. The 

workflow template was specified and executed through the SciCumulus SWfMS on top 
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of the Amazon EC2 cloud environment, using Linux instances (large server and micro 

instances). In this parallel environment, the scientist took advantage of the parameter 

sweeper function of SciCumulus (OLIVEIRA et al. 2010), generating more than 15,000 

combination executed in 2000 workflow instances. Provenance data was collected 

during workflow executions and stored in a PostgreSQL relational database. 

  

Table 7 - Evapotranspiration Workflow Activities 
 

Activity 

no. 

Activity 

Name 

Activity 

Description 

Parameter Parameter 

Description 

Data  

Domain 

1 Dataset 

Loader 

load data of 

station 

dataset station name 

to be load 

nominal (34 stations 

of Brazilian state 

Bahia and Rio de 

Janeiro) 

2 Attribute 

Filter 

remove 

variables 

attr1,  

attr2 

range of 

attributes that 

will be 

removed 

attribute1: 1 to 5, 

7 to 19 

attribute2: 2-6, 

8-20 

3 Data Clean clean the 

variable to be 

analyzed 

class class to be 

analyzed 

7 

4 Data 

Mining 

perform data 

mining 

activity 

algorithm algorithm 

name 

bagging, 

decisionstump, 

gaussianprocesses, 

m5p, 

multilayerperceptron, 

paceregression, 

reptree, 

rbfnetwork 

5 Correlation 

Compute 

compute the 

correlation 

measure 

NA   

6 Metric 

Storage 

store the 

metric of 

workflow 

instance 

NA   

 
 The user-requirements for filtering provenance data were set by the scientist as 

follows: “correlation >0.9” was the chosen metric for analyzing workflow instances. In 

order to discover data-aware constraints, we applied the J48 algorithm as the 

classification learning algorithm due this algorithm present a tree more pruned than 

Random Tree algorithm, from Weka toolbox (HALL et al., 2009). Figure 19 shows the 

branches in classification tree with parameters that guide the experiment to meet the 

metric "correlation >0.9". 

After applying each constraint, the filtered provenance data was sent as input 

data to the Declarative Process Mining Tool. In this use scenario, we adopt 
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DeclareMiner plug-in (MAGGI et al. 2011) in ProM tool as the declarative process 

mining tool. 

 Due to simplicity for illustration purposes, the extracted model considered only 

init, chain succession and co-existence declare constraints. The learned data-aware 

declarative model presents knowledge combining constraints on events flow and 

activities parameters. Figure 20 depicts the extracted model (considering only init; chain 

succession; succession; and co-existence constraints) and with data conditions.  

5.4 Result analysis 

 This learned data-aware declarative model (Figure 20) informs that 

“DatasetLoader” or  “AttributeFilter” are the initial activities, i.e., the past execution of 

experiments started sometimes with “DatasetLoader” activity or other times with 

“AttributeFilter” activity. More over, the constraints “chain succession” said that the 

tasks “DatasetLoader”, “AtributeFilter”, “DataClean”, “DataMining”, “Correlation 

Compute”, “Metric Storage” happen in chain.  

 The scientist sometimes executed “M5P” activity instead of “DataMining” 

activity. In “DataMining” activity is possible vary the algorithm like parameter, but in 

“M5P” the algorithm is not a parameter, actually, this activity implement in code the 

algorithm m5p as fixed. The constraint not co-existence(DataMining, M5P) inform that 

the activities do not occurs at same workflow instance and using one or other the 

experiment combined with data-aware constraints met the pre-defined metric 

"correlation >0.9". 

 A not expected activity “EvPEstimation” was discovered in provenance data “. 

This activity is a program not modularized that execute all activity: “DatasetLoader”, 

“AtributeFilter”, “DataClean”, “DataMining”, “Correlation Compute”, “Metric Storage” 

in a unique code. The constraint not co-existence(EvPEstimation, DatasetLoader), it 

means that was performed “EvPEstimation” activity or “DatasetLoader” activity. 

 The data-aware constraints show the  combinations of parameters that were 

performed combined with declarative constraints to have a workflow execution with 

correlation > 0.9. The rule dataset= rj* ^ attr1<=2 ^ attr2=  ^ class = 7 ^ algorithm = 

“bagging” informs that if  you combine discovered declare constraints with any station 

data of state of  Rio de Janeiro; with other parameters: attr1= 1 or att1= 2; any value de 

attr2 (2-6 or 8-20); class=7; and algorithm= “bagging”, you will the expected result. If 
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you want use station data of state of Bahia, we need choose other parameter 

combination like • dataset=    ^ attr1<=2 ^ attr2= ^ class = 7 ^ algorithm = 

“paceregression”. Below following  the other data-aware constraints discovered. 

 

dataset= rj* ^ attr1<=2 ^ attr2=  ^ class = 7 ^ algorithm = “bagging” 

dataset=    ^ attr1<=2 ^ attr2= ^ class = 7 ^ algorithm = “paceregression” 

dataset= rj*   ^attr1<=2 ^ attr2  ^ class = 7 ^ algorithm = “multilayerperceptron” 

dataset=   ^attr1<=2 ^ attr2  ^ class = 7 ^ algorithm = “gaussianprocesses” 

dataset= rj*  ^attr1<=2 ^ attr2  ^ class = 7 ^ algorithm = “reptree” 

dataset=   ^ attr1<=2 ^ attr2  ^ class = 7 ^ algorithm = “m5p” 

dataset=   ^ attr1=3 ^ attr2=4  ^ class = 7 ^ algorithm = “paceregression” 

dataset=   ^ (attr1> 3 ^ attr1<=5) ^ attr2=5  ^ class = 7 ^ algorithm = “paceregression” 

dataset= rj*  ^ attr1 =9 ^ (attr2>11 ^ attr2<=17)  ^ class = 7 ^ algorithm = “paceregression” 

dataset= rj*  ^ attr1=10 ^ (attr2>16 ^ attr2<=17)  ^ class = 7 ^ algorithm = “paceregression” 

dataset= rj*  ^ attr1=11  ^ (attr2>11 ^ attr2<=17)  ^ class = 7 ^ algorithm = “paceregression” 

dataset= rj*   ^ (attr1>2 ^ attr1<=6) ^ attr2<=17  ^ class = 7 ^ algorithm = “gaussianprocesses” 

dataset= rj*   ^ attr1 >8 ^ attr2<=17  ^ class = 7 ^ algorithm = “gaussianprocesses” 

dataset= rj*  ^ attr1>16 ^ attr2>17  ^ class = 7 ^ algorithm = “gaussianprocesses” 

 

 To receive a feedback from a scientist responsible for Evapotranspiration 

experiment, we elaborate some questions to verify if data-aware declarative model is 

useful to him for a research team. The data-aware declarative model (figure 20) and a 

declarative model with same declare constraint was presented to a scientist for he was 

able to answer  the questions. Although, we understand that it will be necessary make a 

survey with a more comprehensive scientist group, it is possible to verify in this user 

scenario that the learned data-aware declarative model provides useful information to 

scientist plan new scenarios of experiments and share previous scientific knowledge. 

The scientist said that “the data-aware declarative model shows me what scenarios have 

been assessed, enabling new scenarios to evaluate or validate the scenarios already 

executed". 

 The answered questions are listed below. The objective answers were marked 

with X. 

• Question 1: Do you think that the learned data-aware declarative model gives 

you relevant information? 
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(X) Strong Agree  

(  )Agree. 

(  ) Disagree. 

(  ) Strong Disagree. 

• Question 2: Do you think that the learned data-aware declarative model is 

more accurate than learned declarative model ? 

(  ) Strong Agree 

(X) Agree 

( ) Disagree 

( ) Strong Disagree 

• Question 3 - Do you think that the learned data-aware declarative model is 

important to share knowledge in scientific learning process? 

(  ) Strong Agree 

(X) Agree 

(  ) Disagree 

(  ) Strong Disagree 

• Question 4 - Do you think that the learned data-aware declarative model can 

support you fine-tune your experiment ? 

(X) Strong Agree 

(  ) Agree 

(  ) Disagree 

(  ) Strong Disagree 

• Question 5 - Do you think that the learned data-aware declarative model 

gives you insight to plan new scenarios of experimental ? 

(X) Strong Agree 

(  ) Agree 

(  ) Disagree 

(  ) Strong Disagree 

• Question 6- What relevant information or insight the data-aware declarative 

model gives you? (open question) 

- The data-aware declarative model shows me what scenarios have been 

assessed, enabling new scenarios to evaluate or validate the scenarios already 

executed. 
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Figure 19 – Decision Tree 
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Figure 20 – Learned Data-aware Declarative Model 

 

dataset= ∧ attr1<=2 ∧  
attr2 ∧ class = 7 ∧  
algorithm = m5p 
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5.5  Experiments Evaluation 

 We evaluated the approach with provenance data generated in both use scenarios 

described in Sections 5.1 and 5.3. The Declare Analysis plug-in (BURATTIN et al., 

2012) was applied for analyzing the discovered data-aware declare models resulted 

from our approach, and to compare it with the traditional declare model (with no data 

constraints). Both models were compared against the provenance data log, in order to 

report the metrics. We adopted the metrics: fulfillments ratio and violation ratio 

(BURATTIN, 2012) to evaluate the experiments. 

 The extracted log from the first experiment contained 990 workflow instances, 

and three data attributes (corpus, l-word and k-fold). While, the extracted log from the 

second experiment contained 2000 workflow instances, and three data attributes 

(dataset, attr1, attr2, class, mining). Table 8 and 9 show the evaluation metrics (averages 

of violation ratio and averages of fulfillments ratio) of both experiments for each 

individual discovered constraint (“init”, “chain succession”, “succession”, “co-

existence”, “not co-existence”), as well as for all discovered constraints.  

 Comparing the metrics for both models, we notice that the average fulfillment 

ratio increased in the data-aware model; this indicates that, in this particular case, the 

learned data-ware declare model was more accurate. More over, in second experiment, 

it is possible to verify that without the data-aware conditions the constraint chain 

succession was not discovered, omitting an important information in learned model. 

 

Table 8 - No. of violation and fulfillment ratio of the wish detection experiment 
 

Constraints Avg. 

Violation 

Ratio  

Avg. Fulfillment 

Ratio 

 

Avg.  

Violation  

Ratio 

Avg. Fulfillment 

Ratio 

 

 Traditional declarative model data-aware declarative model 

init 0.046 0.9540 0.0339 0.9661 

chain succession 0.1606 0.8394 0.1218 0.8782 

succession 0.1138 0.8862 0.0734 0.9266 

co-existence 0.1081 0.8919 0.0366 0.9634 

all constraints 0.2105 0.7895 0.1445 0.8555 
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Table 9 - No. of violation and fulfillment ratio of the evapotranspiration estimation 
experiment 

 
Constraints Avg. 

Violation 

Ratio  

Avg. Fulfillment 

Ratio 

 

Avg.  

Violation  

Ratio 

Avg. Fulfillment 

Ratio 

 

 Traditional declarative model data-aware declarative model 

init 1 0 0.5473 0.4527 

chain succession - - 0.1297 0.8703 

succession 0.2001 0.7999  0.1292 0.8708 

not co-existence 0.2573 0.7427 0.0834 0.9166 

all constraints 0.3989 

 

0.6011 

 

0.2936 0.7064 
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Chapter 6 – Related Works 

 The approach presented in (MAGGI et al., 2013) is related to ours from the 

perspective that both combine declarative model with data-aware model, this one also 

through classification algorithm and declare miner. However, firstly, it is discovered a 

declarative constraints and then they are associated data-attributes. This approach may 

lead to an inconsistent declarative model, because when it was selected a data attribute, 

the sub-set is not the same that was used as input for discovering the model. This issue 

does not happen with our proposal, because the learned data-aware rules are applied to 

learn a declare model.  

 While, KNUPLESCH et al. (2013) proposes extensions for visual compliance 

rule based on Compliance Rule Graph (CRG) language to support data, time, and 

resource perspectives for business processes, but this approach does not combine 

discovered models. 

 Another work (MOORE et al., 2013) proposes a declarative language for 

processing provenance data. While the approach proposed in (BOWERS et al. 2012) 

infers data dependencies from workflow execution traces based on explicit user-defined 

rules, they propose a high-level language for expressing dependency rules that are 

converted in relational queries. 

 Although the above-mentioned approaches can be used to improve scientific 

workflows using data provenance, our approach differs since a data-aware declarative 

model, that represents a workflow instance based on user-requirements, is discovery. 
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Chapter 7 – Concluding Remarks  

 Provenance data is an important part of scientific workflows, because it assists 

scientists on managing, understanding and reproducing their experiments (GIL et al. 

2007). However, the amount of provenance data generated from scientific workflow 

executions grows exponentially through time, becoming infeasible for scientists to 

manually analyze its content. Thus, mechanisms for extracting and representing 

knowledge implicit in provenance data are demanding. The use of data mining 

techniques is a way of automatically discovering useful knowledge from provenance 

data and presenting it to the scientist in order to facilitate the analysis of his/her 

scientific experiment. In this research we present an approach that combines two data 

mining techniques. The first learns data-aware constraints through a decision tree 

learning algorithm and the second learns declare constraints through ProM declare 

miner. Therefore, our approach learns a data-aware declarative model in the context of 

scientific experiments based on use of process mining techniques for learning data-

aware declarative models on top of scientific workflows provenance data. 

 This model provides operational support for improving understandability of the 

scientific experiment, e.g., a valuable insight for scientist in understanding the main 

characteristics of his/her data mining experiment that led to successful (or to 

unsuccessful) workflow scenarios, in planning future executions, i.e., which event flow 

should be used and which parameter values of their activities. Furthermore, it can be 

used to conformance checking of semantic-based workflow activities, e.g., if quality 

metrics for assessing the workflow result were calculated and recorded in a database. 

Specifically, our approach automatically learns a data-aware declarative model that is 

more precise with respective to the subset of provenance data it represents. This 

precision increases more the reliability in information to be used in the scientific 

learning process. 
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Our approach was evaluated on a data mining scientific experiment scenario and 

an evapotranspiration estimation experiment, showing that it is possible to combine the 

two perspectives of constraints in a unique view. 

 Some limitations were identified in our research, among them we can mention:  

• It is necessary have an enough amount of qualified workflow instances. If not, 

the learned model may not be more accurate. 

• Should have trials with different parameters values for decision tree discovery.  

• The parameters of workflow activities cannot be persisted in unstructured data.  

• The research team must have familiarity with declarative language.  

• Some parts of learning process are error prone. 

 Time limitations prevented us from fully automating the learning process. 

Therefore, we propose, as future work, a plug-in implementing in ProM tool. 

Additionally, more quantitative analysis of the approach to be conducted considering 

other experiments. Also, an investigation with other declarative languages, such as DCR 

Graph (Dynamic Condition Response Graphs). Finally, a survey with a comprehensive 

scientist group will be useful to qualitative analysis the data-aware declarative model in 

scientific workflow scenarios. 
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