<

UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO
CENTRO DE CIENCIAS EXATAS E TECNOLOGIA
PROGRAMA DE POS-GRADUACAO EM INFORMATICA

LEARNING DATA-AWARE DECLARATIVE MODELS
FROM PROVENANCE DATA

Mateus Ferreira Silva

Orientadoras
Prof. Dra. Fernanda Araujo Baido Amorim
Prof. Dra. Kate Cerqueira Revoredo

RIO DE JANEIRO, RJ — BRASIL
Setembro de 2015



LEARNING DATA-AWARE DECLARATIVE MODELS

FROM PROVENANCE DATA

Mateus Ferreira Silva

DISSERTACAO APRESENTADA COMO REQUISITO PARCIAL PARBBTENCAO
DO TiTULO DE MESTRE PELO PROGRAMA DE POS-GRADUACAEM
INFORMATICA DA UNIVERSIDADE FEDERAL DO ESTADO DO RD DE JANEIRO
(UNIRIO). APROVADA PELA COMISSAO EXAMINADORA ABAIXO ASSINADA.

Aprovada por:

P

Prof, Dani¢l Cardoso Moraes de Oliveira, D.Sc. — UFF

y
,\ o . } . {
AMAA N AA_ .i’vz_ L

Prof. Flavia Maria Santoro, D.Sc, — UNIRIQ

— ]." ;/

ANC O /T 3 Yoy A A ley

Prof. Fernanda AraujodBaiﬁo Amorim, D.Sc. —= UNIRIO

K/iifé': féﬁg{ﬁmk_&rﬂ I .

Prof. Kate Cerqueira Revoredo, D.Sc. — UNIRIO

RIO DE JANEIRO, RJ — BRASIL
Setembro de 2015


ur8a
Carimbo


Silva, Mateus Ferreira.
S586 Learning data-aware declarative mddefs provenance data /
Mateus Ferreira Silva, 2015.
62 f.; 30 cm

Orientadora: Fernanda Araujo Ba@norim.
Coorientadora: Kate Cerqueiradreso.

Dissertacdo (Mestrado em Inforaagt- Universidade Federal do
Estado do Rio de Janeiro, Rio deidan2015.

1. Data-aware. 2. Metadados. 3. Modelo detilaxa4. Dados de
proveniéncia. 5. Workflow cientifico. I. AmorimegFanda Araujo
Baido. Il. Revoredo, Kate Cerqueira. lll. Univeliaile Federal do
Estado do Rio de Janeiro. Centro de Ciéncias Exat@ecnoldgicas.
Curso de Mestrado em Informatica. IV. Titulo.

CDD - 025.04




Para minha filha Laura que enche nossos coragOesnular.



Agradecimentos

7z

Ser aluno de mestrado € uma tarefa que necessitapd® familiar,
compreensao dos amigos e de colegas trabalho, @psdeontemporaneos do mestrado,
orientacéo de professores e um auxilio divino pargersisténcia e inspiracdo. Por ter
tido tudo isso, agradeco:

A Deus que em sua infinita sabedoria tem me dadpafe sabedoria para
atingir as metas que trago para minha vida.

A minha esposa Carolina que sempre acreditou eumpoiencial, pela paciéncia
nos momentos de estudo, incentivando-me nos mome@allvida. E a nossa filha
Laura, nosso maior bem, que foi muito desejadatqubw periodo de mestrado e esta
perto de nascer, nos trazendo muita alegria ndts® @no de mestrado.

Aos meus pais, Adeladio e Claudemira, por tudo fiperam pela minha
educacdo. A minhas irmés Tatiana e Tamara e aoimm&io Marcelo, que sempre
foram fonte de incentivo para alcancar meus olgstiv

Aos professores do Departamento de Informaticacagh da UNIRIO, com
eles pude aumentar meu conhecimento na ciénciamautacdo. E em especial, as
minhas orientadoras Fernanda e Kate que propiciaramexcelente orientacdo, pelas
boas discussfes durante a pesquisa, pelo conhécim@mpartiihado comigo e pela
paciéncia ao lidar com minhas dificuldades, ndadeigando sair da trilha. A presenca
delas estéd obviamente manifestada em cada linha tedalho. Posso dizer, com
certeza, que o convivio com elas durante o mes@adwentou minha admiracao pelo
profissionalismo e pelo notorio saber que elasymss

Aos colegas da UNIRIO Jodo Carlos Gongalves, RelmaXavier, Pedro
Richetti e Felipe Ledo, pelos conhecimentos cornipados que contribuiram com

abordagem dessa pesquisa.



E aos colegas da Petrobras: Jeferson Rocha, Méngaruz, Manoel Alexandre
Ricardo Monteiro, Ricardo Neimo e Vinicius Ribadapeompreensdo nas minhas

auséncias e incentivo a continuidade do mestrado.

Vi



SILVA, Mateus FerreiraLEARNING DATA-AWARE DECLARATIVE MODELS
FROM PROVENANCE DATA . UNIRIO, 2015. 62 paginas. Dissertacdo de Mestrado
Departamento de Informética Aplicada, UNIRIO.

ABSTRACT

Data provenance represents a collection of metamtatae origin and history of data. In
scientific workflows, this metadata is essentiat @perational support of scientific
experiments. The amount of provenance data gewerfaten scientific workflow
executions grows exponentially through time, becmminfeasible for scientists to
manually analyze its content. Thus, mechanisms efdracting and modeling the
knowledge implicit in provenance data are demandidge to the diversity and
flexibility inherent to scientific experimentatioacenarios, declarative models are
potentially adequate for the task. However, thepidgilly do not consider data
attributes, which would enrich its embedded knogkedith relevant information such
as parameter values used in each workflow instahctassification model may fill this
gap. This work proposes an approach to automatideirn both declarative and a
classification models from provenance data, andbdoeenthem into a unique view. This
proposed approach was evaluated on two real sStteakperiments scenarios on the
domain of text mining and of Evapotranspirationraation.

Keywords: data-aware, declarative model, provenance daentgic workflow
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RESUMO

A proveniéncia de dados representa uma colecdo etadados sobre a origem e
historico dos dados. Emorkflowscientificos, este metadados é essencial paraio apo
operacional de experimentos cientificos. A quadidale dados de proveniéncia
gerados a partir de execucgbesvdarkflows cientificos cresce exponencialmente ao
longo do tempo, tornando-se inviavel para os @i analisar manualmente o seu
conteudo. Assim, mecanismos para extrair e modelaonhecimento implicito nos
dados de proveniéncia sdo demandados. Devido &sidizde e flexibilidade inerente
aos cenarios de experimentacdo cientifica, modaéatarativos sdo potencialmente
adequados para esta tarefa. Entretanto, elesnipita@ ndo consideram atributos de
dados, o que poderia enriquecer seu conhecimemtmrporado com informacdes
relevantes, tais como o0s valores dos parametrdigadbs em cada instancia do
workflow. Um modelo de classificacdo pode preencher estmda Este trabalho propde
uma abordagem para aprender automaticamente taatielos declarativos e de
classificacédo a partir de dados de proveniénaangbina-los em uma Unica visao. Esta
abordagem proposta foi avaliada em dois cenarias Experimentos cientificos no
dominio de mineracao de texto e de estimativa dpavanspiracao.

Palavras-chave: data-aware modelo declarativo, dados de proveniénevarkflow

cientifico
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Chapter 1 — Introduction

This chapter introduces the topics that motivaieel research. The problem
under analysis is characterized, the hypothegstablished, research goals defined and
the method used explained.

1.1 Motivation and Problem Characterization

Scientific experimentation is a method appliedriany fields of science, such
as: physics, chemistry, biology, bioinformaticsirasomy, cosmology, meteorology,
oceanography and agriculture (CUEVAS-VICENTTIN, 20IMEDEIROS, 2011).

Scientific experimentation is an interactive pss;driggered by questions about
an observed phenomenon, followed by hypothesis ldeweent and test executions
using several variations of the studied scenar®@ Jcientist fine-tunes the experiment
by modifying tasks and parameters until their hizgpsts has been accepted, refuted or
modified, and process is finished (ZEN®al, 2011). Scientific learning is an iterative
process, which begins with the current scientifiowledge and then chooses a theory
to test or explore (SELTMAN, 2015).

A Scientist or a research team may use a Scientiforkflow Management
System (SWfMS) to support the execution of scientéxperiments in data-flow
scenarios modeled as workflows, varying input deéaameters, or algorithms. SWfMS
(OLIVEIRA et al, 2010). SWfMS supports scientist with constructioh new
experiments, re-execution, documentation, reuse @ndvenance management
(MEDEIROS, 2011).

The historical data generated during the executibscientific workflows is
named retrospective provenance data. It encompasg@snation about activities,
agents, execution timestamps, parameters, andeen(ltIM et al, 2010), so as to

answer important questions regarding the experimaiinale, such as what activities
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were performed by an agent in a time period, whattlae input parameters that led to
the best results, or which data artifacts werevedri The varying range of each
parameter is very important in some experimentgesthe scientist can have different
results depending on the chosen parameter, scs Maluable information when
analyzing workflow provenance data.

Additionally, prospective provenance data includée abstract workflow
specification for a particular scientific experinhewhich may be specified, detailed,
and then executed by means of a workflow enginé(let al, 2010). In general,
prospective provenance data is procedural and migeri.e., requires the prediction of
all possible paths (VAN DER AALSEt al, 2009).

Both retrospective and prospective views are itgndrto manage, understand,
and reproduce experiments (DEELMAN; CHERVENAK, 2008V et al, 2010) and
therefore should be carefully and constantly aredylay the scientist when evaluating
past executions and planning future executions.

However, the amount of provenance data generaited $cientific workflow
executions grows exponentially through time, becmminfeasible for scientists to
manually analyze or evaluate its content. Moreoiteis essential to identify useful
information (CUEVAS-VICENTTIN et al. 2012) based on user-requirements.
Therefore, automatic mechanisms for provenanceatsysis are demanding.

On the other hand, Process Mining is an advaneelinique to automatically
discover process models from data logs (MAGGI et 2011). As such, it may be
considered a powerful technique for provenance datdysis in scientific experiment
scenarios, where the data log is constituted bys#teof workflow instances records.
Typically, the data log is configured by the sciginto register relevant provenance
data, as well as the results reflecting how wedl tasult of each workflow instance
achieved the experiment objectives (VAN DER AAL8Tal. 2012; TERUELet al,
2014). In our work, the experiment objectives aodgkd relevant provenance data
constitutes user-defined requirements.

There is a plethora of process modeling languageae of them used to explicit
a procedural view of the process in a imperativelehgsuch as BPMN, Epics, Petri
nets, BPEL, UML activity diagrams (VAN DER AALS®8t al, 2012)), and others able
to explicit a declarative perspective of it [suchRCR graphs and Declare (MAGGI et
al., 2011)]. Although it is possible to use both pexives when representing a

workflow (PESICet al, 2010), declarative models are more flexible timaperative
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models and are thus recognized as being more aeguaxplicit valuable knowledge
that may be embedded within scientific experimermtvpnance data (VAN DER
AALST et al, 2009). Flexible and procedural process modehatexclude each other.
It is possible use different paradigms in ordepttovide flexibility in workflow (PESIC
et al, 2010).

However, declarative models are not typically gesd to capture data aspects
of a process (KNUPLESCHt al 2013; MAGGI et al. 2013), which is of specific
importance to capture implicit knowledge about pseters variation during a scientific
experiment. This issue is reinforced by the Prodéissng Manifesto, which claims that
combining process mining with other types of analys a challenge (VAN DER
AALST et al 2012). A data-aware declare model can be moreraig; therefore,
providing more reliable information to users.

Given the facts stated above, the problem undelysisan this work can be
defined asHow to learn a model that combines data-aware aspecwith declare

constraints based on provenance data?

1.2  Hypothesis and Solution Proposal

The hypothesis guiding this research is statedlFagleclarative constraints and
attribute data rules are combineBHEN more accurate models are discovered from
provenance data.

We address the given problem by proposing an agprehatcaptures both data
aspects and workflow rules of a scientific expenimby applying process mining
techniques combined with classification technigaegop of its provenance data. The
approach learns a model that comprehends andreltdes declarative rules and data-
aware rules learned through declare miner and idactsee algorithms, respectively.
Provenance data used for mining is based on usdefined requirementse., metrics
that will provide information about whether eaclstance complies or not to the user
guality requirements. The resulting combined modetiata-aware declarative model,
provides operational support to have more accunfdemation about the experiments,
e.g, a valuable insight for scientists in understagdime main characteristics of their
experiments that led to successful and unsucceg&ftkflow instances. A successful
workflow instance is the one that finished its exean with no errors, and which results
met all user-defined quality requirements. Thisrapph supports scientists to plan

16



future executions or performing conformance checdkssemantic constraints in

workflow activity.

1.3 Research Goal

The contribution of this dissertation is to prdsan approach to learn and
represent a data-aware declarative model in théexbof scientific experiments. We
also provide the formal semantics of data-awardadeconstraints, extended from the
original declare templates (MAGGt al, 2011).

1.4  Research Methodology

The scientific methodology we followed in this easch consisted of the
following steps: first, a bibliographic review wanducted aiming at gathering
information about recent generation of models froravenance data. After that, the
motivation and problem were defined, with a hypeibeand set of goals being
formulated to guide the research. The third stepptsed the proposal specification,
architectural design [in which a relational schefoa the provenance dataset was
designed as an extension to the PROV-DM metamdd@REAU; MISSIER, 2013),
and implementation. The proposal was evaluateddlofFirst, an exploratory case
study was conducted using a data mining experiragra scenario. This study attested
the feasibility of our proposal, the correctnessoaf implemented architecture and
gathered preliminary results from the chosen data process- mining algorithms. In
addition, an experiment was conducted in the dorohigvapotranspiration estimation.
In this second scenario, the resulting data-awardadative model was quantitatively
analyzed using compliance verification metric agtitne original process model, to
verify the research hypothesis.

1.5 Document Structure

This dissertation is structured into 6 chaptersides this Introduction. Chapters
2 and 3 present important concepts for understgnaolim approach, which is presented
in Chapter 4 and evaluated in Chapter 5. Relatedk8Vare presented in Chapter 6.
Finally, Chapter 7 concludes the paper and provsdese future directions.
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Chapter 2 — Scientific Workflows

A scientific experiment may be defined as a setcoftrolled actions that
includes variations of tests, and whose resultsuatally compared to each other to
accept or refute a hypothesis. This set of acticass be modeled as a scientific
workflow, and each different workflow executionidty is named a workflow instance
(MATTOSO et al, 2010). Scientific workflows aim to accelerataeestific advances
through task automation, scaling, simulation, &JEVAS-VICENTTIN et al. 2012).

The execution of one workflow is a part of lifects of the scientific experiment
by a SWIMS (MATTOSOet al, 2010). Beyond the execution phase, there are mor
three phases: composition, configuration and arsalffSgure 1). Scientists draw up
specifications in the composition phase of the arpent, stating which programs
should be implemented and which are data depergehetween them. The next step is
the configuration phase; in this moment computirgsources are mapped for
performing data transfer and processing; and wawkfinonitoring. Next, in analysis
phase the data are available for the scientistkchiee experiments results. Scientists
will draw conclusions based on query, visualizimgl @nalyzing the data (OLIVEIRA,
2012).

Scientists can execute different programs in & fd activities. These activities
are performed in chain and they produce data as itgpother activity. Furthermore,
variations occur input data and parameters, likeerwlhen experiment demanded
parameter sweep or loading different datasetstiHaravords, a scientific workflow W
is represented by four elements (A, Pt, I, O), whéris a chain of activities {aep,as,

..., an}; Pt is a set parameters of A {ppt, pts, ..., pt}; | is a set of data inputs i,

i3, ..., ir}; and O is a set of output data{oo,, 03, 0}(OLIVEIRA et al, 2010). For
example, a data mining experiment is modeled sushientific workflow W. W has
activities {a, @&, @&, &} Wwhere a="data loader”’, g="data pre-processing”,

as="algorithm execution” and,x"data pos-processing”. These activities are paréa
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against in different inputs {ji,, i3, ..., ist and parameter values {ptpt, pt, ..., P} UP
to the experiment exploration be finished and thgpuat data O achieves the expected
result (OLIVEIRAEt al, 2010).

compaosition

analysis Provenance configuration
Data

execution

Figure 1 — Scientific Experiment Life Cycle (Adaptel from OLIVEIRA, 2012)

Many real-world scenarios may be expressed asfloark. Complex workflows
require a level of abstraction to help scientisigress their experiments. This
abstraction is offered by Scientific Workflow Mareagent System (SWfMS) that
model, execute, and monitor workflows (OLIVEIR& al, 2010). SWfMS supports
scientists in planning different scenarios for ekpentation, considering variations on
input data, parameters, and algorithms. They cder:ofun-time tasks management,
resource capabilities, task scheduling, data prawesm management, data transfer, and
monitoring tasks (OLIVEIRA et al, 2010). Examples of SWIMS are Kepler
(ALTINTAS et al. 2004), VisTrails (CALLAHANet al, 2006), Taverna (HULIet al,
2006), and Chiron (OGASAWAR/At al, 2013). There are other solutions such as
SciCumulus, which is a middleware to orchestratengific workflows through SWfMS
in distributed and parallel environments, such asrkflow executions in cloud
environments (OLIVEIRAet al.,2010).

Computational support for scientific workflows digh SW{MS is of

particularly importance for processes that are asguty executed and for experiments
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that explore many variations on workflow instancesice these scenarios are too
complex for humans to handle.

In general, SW{MS provides a procedural modeltecey the workflow design.
Despite this operational support, scientific uggmcally desire to have flexibility, to
do whatever they want experiment without a tighttoa. Flexibility is a limitation of
SWIMS, sometimes; it is difficult to provide botlexibility and support, because of
conflicting requirements. So, Information Systenowdd provide balance between
flexibility and support. In the Figure 2, shows iight side the part of classical
workflow management systems like a SWfMS (PES&i@l, 2010).

On other hand, the left-side emphasis on flexipdind user empowerment. It is
difficult to visualize all possible paths and thegess is driven by user decisions rather
than system decisions. Groupware systems focusupposting human collaboration,
and co-decision making. They need flexibility fonpuedictable result, so the expert can
react to exceptional situations and execute thd&fleov in the different manner (PESIC
et al, 2010).

A " =
high E/
3 L
e E g 'l
2 256
= SEG
9 S =&
o a b
X
=]
low| ‘o —. —=__
control @)
<
users system

Figure 2 - Flexibility versus Support (PESICet al., 2010).

2.1 Data Provenance

Data provenance manages a collection of metadatiaia origin and history. In
scientific workflows, this metadata is essential fooviding an operational support for

scientific experiments. It comprises informatioroab entities (input data, files, etc),
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activities, agents, and relationship among thenditkahally, the timestamp, parameter
values, input artifacts and delivered artifacts &ach activity is kept track of as
provenance data (Glét al, 2007)(ZENGet al, 2011).

Provenance is perceived as a crucial componestiehtific workflow systems,
which helps scientists to ensure the reprodugibitit their scientific analysis and
processes, publication and contribution betweenockers (GlLet al, 2007), i.e., the
lineage and history of results (CUEVAS-VICENTTE al, 2012). Provenance has
been studied in various areas, such as scientificegsing and databases (CHEN&Y
al., 2009), as well as in SWfMS (LIM «l., 2010). It can be queried, analyzed,
visualized, mined for understanding of experimeesuit or workflow debug.
(CUEVAS-VICENTTIN et al, 2012) (ZENGet al, 2011).

Different data provenance systems have their @presentation model. In order
to provide interoperability among different systermd$amily of specifications has been
defined by W3C as a standard for provenance rempasen, named PROV
(MOREAU; MISSIER 2013). Within PROV, the PROV-DM R®V Data Model) is
the conceptual data model specification. PROV-Didresents the relations between
the entities, agent, activities, and their collectias well as the time at which they were
created (MOREAU; MISSIER 2013). Figure 3 illustat®ROV-DM as a UML
diagram; the classes and the relationships amasg tlescribe the use and production

of entities by activities, which may be influendegagents and the relationships among
them.

21



Collection
id
aftnbutes
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== attributes
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Agent = L HadMember.
id B
ActedOnBehalfof

Figure 3 - PROV-DM: General overview (MOREAU; MISSIER 2013).

2.2  Scicumulus

SciCumulus is a middleware used to distribute,tradbrand monitor parallel
execution of scientific workflows on top of a SWfMSuch as VisTrail) in a cloud
environment. SciCumulus orchestrates the workfloarajpel execution over a
distributed set of virtualized machines. SciCumuhes a distributed architecture
composed by four-layer elements: desktop layer disdatcher workflow; distribution
components (execution broker, parameter sweeperapsenlator, scheduler) that
manages activities; execution modules (instancéraiter, configurator, executor) that
perform workflow programs; and data layer (data ueitjon agent, provenance
database, shared filesystem) that manages data€¢F (OLIVEIRA, 2012).

Scicumulus hides the complexity of the workflow ragdkelism in cloud
environments from scientists and collects disteduprovenance data following the
Many Tasks Computing (MTC) paradigm, which is based several computing
resources used over short time periods in ordeactmmplish several computational
activities. SciCumulus provides two different kindé parallelism functionalities:

parameter sweep and data parallelism. Followingd#&fmition of a workflow W ({&,
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...{aj} previously described; parameter sweep is a pelisith functionality in which
each activity ais performed using configured parametefs @nd for each parametey; pt
an instance of;as performed. Data parallelism, on the other handy be depicted as
simultaneous execution of an activitytiaat consumes a subsgtaf the input data for
a. For each input subsef,dne instance of ai is executed usifaad its input. In other
words, the same activity is executed with differepiut data.

Scicumulus captures provenance data dynamicaliyngl the execution of the
scientific workflow. Therefore, the scientist isl@lbo gather and query provenance data
during workflow execution and analyze the experitnessults. Provenance data is
inserted into a W3C PROV-compliant database andigied in PostgreSQL RDBMS
(Relational Database Management System) (OLIVERAI, 2010) (COSTAet al,
2013).

Desktop Dristribute Execulion
Layer Layer Layer
Execution Instance
Broker Controller
Risaaich Farameter Conf e
ispatcher Sweaper onfigurator
Encapsulator Executor
| A
Scheduler
Data Layer
Data Acguisition Provenance Shared
Agent Database Filesystem

Figure 4 - Scicumulus Conceptual Architectural (Ad@ted from OLIVEIRA, 2012)
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Chapter 3 — Declarative Process Mining

Process mining provides a link between data miaimg) BPM (Business Process
Management). It is an approach for discovering, ivang and improving real
processes through extracting knowledge from evegs lacquired by information
systems. Process mining may be applied to autonpatesbss discovery; conformance
checking (comparing model and logs); simulation sledconstruction; and history-
based recommendations (VAN DER AAL®Tal, 2012)

There is a plethora of process modeling languagksh may be grouped into
imperative [such as BPMN (WHITE, 2004), Petri neé8JRATA, 1989), UML ADs
(STOERRLE)] or declarative [Declare (MAGGet al., 2011), DCR Graphs
(HILDEBRANDT, 2011)]. While the former models albgsible steps of a process, the
latter focus on the logic that governs interactitae$ween the actions of a process,
describing what can be done by restricting onlyuhdesired behavior (ZUGAEt al,
2013).

Imperative modeling specifies the procedure of lppacess has to be executed,
thus requiring all possible process paths to bdi@tp specified in the model before
the workflow execution. Every new step must be dddethe model during experiment
specification in experiment composition phase. lontrast, declarative process
modeling does not specify the control-flow of aittés a priori. Instead of determining
all possible process paths, only its essentialadtaristics are described through rules.
Adding new constraints to the model limits the nemkof workflow execution
alternatives. This way, every execution controwflis possible, as long as it does not
violate any of the specified constraints (VAN DERIAST et al, 2009).

Declarative models describe a process in an “operid”, while procedural
models is a “closed world”. Figure 5 illustrate® ttifference among the universe of
possible, forbidden, optional and allowed pathsaf@rocess execution following either
a procedural model (a more traditional approacha ateclarative model (constraint-

based approach) which enhances flexibility.
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Figure 5 - Declarative vs. Procedural Models (W.M.PVAN DER AALST etal.,
2009)

Flexible models allow increasing the user decisi@king, moving choices from
workflow design time to run time. To support users making decisions, the
information systems may provide recommendationsuidin process mining techniques.
These recommendations may depend on explicit dokmeiwledge, but it is possible to
learn from a process with past workflow executiowd #hen give to user for insight in
planning future experiment scenarios. The experty nodecide to discard the
recommendation, but at least some decision suppgiven. The analysis of workflow
instances becomes more relevant when experts arfonoed to work in a particular
way (VAN DER AALSTet al, 2009).

3.1 Declare

Declare is a process modeling language based ®rdellarative paradigm.
Declare maps are interesting in the context of ggeanining. One can discover Declare
maps from event logs (extracted from audit traifansaction logs, and databases)
without preexisting models and knowledge. Declamvides flexibility mechanisms,
such as: defer (decide to decide later), changeideldo change model), and deviate
(decide to ignore model) (VAN DER AALSat al, 2009).
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Declare model presents recommendations to usergdapendent information,
the users does not compel to follow recommendatibioffers desirability rules to
execute tasks, re-do tasks that were executedebefoeven skip tasks that should be
executed users (PESHEE al.,2007).

Declare is an open source (WESTERGAARD; MAGGI, POLTL (Linear
Temporal Logic) rule collection, which shows thentol-flow dependency between
two activities on finite traces through graphicgpresentation (MAGGet al, 2103). It
allows the discovery of non-sequential or coexgstievents in the same process
instance. The language is intended to be undemtderdfor end-users. The LTL
operatorO mean “has to hold in the next position of a pathhile operatorzo has a
semantic “has to hold always in the subsequenttiposi of a path” and operater
means “has to hold eventually (somewhere) in thHeseguent positions of a path”
(Table 1) (MAGGlet al, 2011).

Table 1 - LTL Operator semantics (MAGGI et al. 201)

Operator Semantics

has to hold in the next position of a path.

O has to hold always in the subsequent positions of a path
¢ has to hold eventually (somewhere) in the subsequent positions
of a path

Declare describes a set of constraints which rhassatisfied throughout the
process execution. The constraints are classifigg@mplates in the groups: existence,
relation, negative relation, and choice (MAG&tlal, 2011).

This task of automatically learning a declare niddem data is known as
Declare mining. An implementation for declare mgis available as plug-in in Prom
tool. It uses constraint templates with a graphreatation and implements semantics
through operations such as init (A), precedence(A@ponse(A,B), succession(A,B),
not succession(A,B), chain succession (A,B), catexice(A,B), among others
(MAGGI et al, 2011).

A relation template states a dependency amongatkivities. For example, the
“co-existence(A,B)” template states that if onetlodé events A or B occurs, the other

one should also occur. The templates: “chain resgrichain precedence” and “chain
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succession” determines that the occurrences dfwbeactivities (A and B) are next to
each other (MAGGet al, 2011). Table 2 depicts constraint templates iol&@e, along
with their meaning, LTL semantics, and graphicgresentation

Table 2 -Declare Constraint Templates (Adapted fronMAGGI et al., 2011; BOSE

etal., 2013)
Constraint Meaning LTL semantic Graphical
notation
responded existence | if A occursthen B occurs before or ¢A — ¢B
after A
precedence(A,B) if B occurs then A occurs before B (-B UA) VO
(=B)
response(A,B) if A occurs then eventually B occurs o (Ao ¢B)
after A
succession(A,B) for A and B both precedence and | response(A,BY\
response hold precedence(A,B)
not succession(A,B) | if A occurs then B cannot eventually] o (Ao - (¢B))
occur after A
chain precedence(A,B) | if B occurs then A occursinthe nextf o (B — O A)

position before B
chain response(A,B) | if A occurs then B occursinthe nextf o (A — O B)
position after A

q
ll
i

chain succession(A,B) | for A and B both chain precedence| o (A — O B) A
and chain response hold o(B— O0A)
co-existence(A,B) if A occurs then B occurs before or ¢A — ¢B
after A
and vice versa
alternate response if A occurs then eventually o(A—>O (AU
B occurs after A without other B))
occurrences of A in between
alternate precedence if B occurs then (-BUA) Vo ([ hl—>e5]
A occurs before B without (-B) A
other occurrences of B in between | o (B — O (-B U
A) Vo (-B)
alternate succession for Aand B alternate (= p—>a = |
both alternate precedence response(A,BY\
and alternate response hold alternate
precedence(A,B
not co-existence AandB - (¢A/\#B) [ ]
cannot occur
together
not succession if A occurs then o (A — o-(¢B))
B cannot eventually occur
after A
not chain succession if A occurs then o (A — O (-B)) BH== @

B cannot occur in the next
position after A

The existence templates describe a unary reldtiprasxd define the cardinality
or the position of an event in a process instasgeh the template init(A) of a activity
specify the process instances start with activity Table 3 shows the existence

templates with its meaning, graphical notation &mtl semantics. The existence(n,A)
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specify that A should occur at least n times inr@ess instance. While, templates of
the type absence(n+1,A) specify that A should ocaumost n times. Templates
exactly(n,A) indicate that A should occur exactliimes.

Table 3 -Existence Templates (Adapted from MAGGI etal. 2011)

Constraint Meaning LTL semantic | Graphical
notation
init(A) start with A A [ it |
existence(1,A) A should occur at least one time *A [n]
existence(n,A) A should occur at least n times ¢(ANO [ |
(existence (n-1j, )
A)) _
absence (A) A should occur at most one time | —existence (1, | & |
A)
absence(n,A) A should occur at most n times - existence [ |
(n+1, A)
exactly(n,A) A should occur exactly n times | existence (n,A [ ]
/\absence (n+] )
A) "

The figure 6 shows a learned declare model exdaitbom an ontology process
(SILVA et al, 2014). The learned rules state that “data trémslactivity only occurs
after “data loader” activity, “apply terminologicadimilarity metric’ and “apply
structural similarity metric” co-exist, meaning thé the scientist plan to apply a
terminological metric in a future scenarios, theicural metric should also be applied
and “apply semantic similarity metric” activity aaot co-exist with “apply structural
similarity metric”’, meaning that the scientist stibylan future scenarios choosing

between applying structural or semantic metric$ not both.

Apply Apply Apply
Data Data Terminological Structural Semantic
Loader Translator Similarity Similarity Q—H—! Similarity

Metric Metric Meiric

Figure 6 - Declarative model of scientific experimat of ontology matching (SILVA
et al. 2014)
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A discovered Declare map has many constraintsatetredundant, it may be
pruned by selecting only those constraints thattaemost interesting for the user, so,
we can simplify the model without lose meaning.ufgg7 presents a declare constraint
hierarchy, the solid arcs indicate which constsaidbminate other constraints. A
constraint can be discarded if there is a direqtath to it from another constraint
involving the same event. For example, a constsictession(A, B) is redundant if a
stronger constraint chain(A,B) holds. The dasheth andicate constraints that are
transitive (MAGGlet al, 2013b).

chain succession

/ \ not co-existence
chain response chain precedence l
alternate succession y
A/ not succession
alternate response /™, alternate precedence l
‘succession . .
P k/ \ not chain succession
' response v precedence
M —» dominates

co-existence
'

wp': N ‘// -h“ N »  transitive

responded existence

Figure 7 - Declare constraint hierarchy (MAGGI et al., 2013b)

3.2 Validation declarative models

It is not trivial to evaluate a declarative modatcause is no defined to point
precisely deviations and quantify discrepanciea model with absence notion of state.
Mainly, in order to analyzing the compliance of anstraint-base model some
constraints can be vacuously satisfied. BURATEINl. (2012) introduce the notion of
healthiness of a trace, based on the conceptightion of a declare constraint.

A constraint activation occurs when an occurresfcactivity forces an behavior
in process in relation of other activity. For exdeppf a constrainhot co-existence(A,
B) is activated, means that the occurrence of agtikitforces not occurrence of the
activity B. A constraint activation may be fulfileor violated, following the constraint
example above, if activities A and B did not ocauisame process instance, then the
activation was fulfilled. However, if activities And B happened in same process

instance, then the constraint was violated. Therimétat measures the quantity of
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fulfilled constraint activation is calletllfillment, on other handyiolation is a metric
that measures the quantity of violated constrastivation. The ratio of fulfillment of a
constraint over total number of activation defitbe metricsfulfillment ratio and

violation ratio (BURATTIN, 2012; MAGGlet al.,2013). i.e.:

fulfillment ratio =X fulfilment / activations

violation ratio =2 violation / activations
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Chapter 4 — Proposed Approach

In this chapter, we describe our proposed apprdaclkcombining the data-
attribute perspective with the control-flow perdpex; resulting in a data-aware
declarative model discovered from provenance datacentific experiments. Thus,
scientists can have the balance among flexibility aupport in execution of scientific
experiments. Due to the flexibility, the learnedadaware declarative model provides
insight to scientists when planning new workflovesarios, since they will be faced
with combinations of parameters and activities thaguently resulted in successful
workflow instances, based on user-requirementsexieduted in a traditional SWfMS.
Moreover, the scientists will have in their hanks bperational support provided by a
SWIMS (with predefined flow of activities) and &fible declarative model to aid them
in making decisions to explore new workflow sceoathat tend to be more successful,
to avoid those scenarios that tend to be unsuedessid even to better understand the
reasons for both.

Figure 8 shows a high level view of the main cormgua of our proposed
approach. Initially, the scientists specify thewrkflow templates and execute several
scenarios — varying algorithms, parameters anduresee — using the conventional
SWIMS platform that they are used to. Those exeanstigenerate provenance data.
After several executions of workflow, the provenardata collected from historical
executions is filtered, based on user requiremey@serating a new data subset. This
subset of provenance data is used to automaticallgt a data-aware declarative model.
The scientist then analyzes this model and idestifwhich were the most appropriate
alternatives for activities and parameter valueg-funes the workflow template and
plans new scenarios based on this information, famally (re)executes these new
scenarios. This process is interactive and incréahenntil the scientists validates or

refutes their research hypothesis.
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Figure 8 - Overview of the main components of therpposed approach

The second view of the approach (Figure 9) ilatss the three main steps
proposed by our proposed approach: “User Requireredinition”, “Workflow
Execution”, and “Data-aware Declare Model Learning’he first step (“User
Requirement Definition”) should be executed by #ugentist, and encompasses the
definition of experiment metric(s). Those metriepnesents and operationalizes the user
requirements on the quality of their scientific Witmw results, thus reflecting how the
results of a particular workflow instance should daluated. For example, a metric
“precision” more than 0.8 can be define the wonrkflmstance quality. The metrics
should be defined by the scientist, who also ipaasible for implementing an activity
to automate the calculation of each metric, andchttthis activity to the scientific
workflow template. These implemented metrics allaw automatic classification of
each workflow instance as either being successfulnot, based on scientist
requirements. The metrics defined by the scieatisistored in the provenance database.
For example, in a data mining experiment the sigentay define precision, recall and
f-measure as metrics, implement a service to caleulhese values, and include a
workflow activity as the last step of the data maiworkflow, invoking this service.

In the Workflow Execution step, the SWfMS shoulel &lready configured to

access a PROV-compliant database (extended witmétecs tables we propose). The
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scientist is responsible for defining workflow seeos they wants to execute,

specifying each scenario in the SWIMS and execu@agh scenario. During each

execution, an engine implemented on SWfMS colleetad] stored provenance data in a
database. For example, in the data mining expetimey be specified and executed on
top of VisTrails. VisTrails collects the provenandata of each workflow instance, as
well as its user-defined metrics.

The last step, “Data-aware Declare Model Learning’the main step of our
approach, and is detailed in Figure 10. The leagriidiscovery) process encompasses
four activities: “Provenance Data Filtering Accargito Chosen Metrics”, “Data-aware
Rules Discovery”, “Provenance Data Filtering Acdogdto Data-aware Rules” and
“‘Data-aware Declarative Model Discovery”, which Mile detailed in the following

sections.

Data-aware
= User-requirement Workflow
Learning

Figure 9 - Proposed Approach Steps.

= Provenance Data Data-aware Provenance Data Dats-aware
g Filtering according to B Fittering according to Declarative Model o
Chasen Metrics g Data-Aware Rule Discovery
A PN :

" = 5
#
. .
= . .
* s .
. .
-----------------------------------

data-aware declare model

Figure 10 - Data-Aware Declarative Model Learning ativities

4.1  Provenance Data Filtering According to User-Ragirements

In a detailed view for learning a data-aware dathze model (Fig. 8), the first
step is “Provenance Data Filtering According to td&guirements”. This activity

filters the provenance data based on workflow msta whose log contains information
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about the metrics chosen by the scientist. We ee?ROV-DM metamodel to persist
pre-defined metrics and capture their values. TROY-DM metamodel provides
flexibility for not previously defined entities, sbsuited for the specification of several
specific user-defined requirements. Figure 11 shinsextended data model of PROV-
DM, including “User-defined Metric” Entity (blue &), that qualifies objects like
“Activity” (or even “Collection” of activities) ankbr “Entity”.

Once the metric is collected for each workflowtamee, in this activity the
workflow instances that satisfy user-requirementge &ollected, thus filtering
provenance data to only consider the instancesi®riaterested in analyzing. For
example, a scientist may be interested in analywmiackflow instances that overcome
0.8 in precision (due to insights that they maystibute scenarios that will lead to good
results) or, yet, only instances with precisionsiéisan 0.8 (in order to learn which
scenarios should be avoided). Thus, the provenalata to be mined into the
declarative model is based on user-requirementshadmie inserted in a metamodel that
extends the PROV-DM.

User Defined Metric Quality s Collection
id , " [
attnbutes Qualify aftributes
Qualify
WaslInformadBy
WasDerivedFrom
Y Y
Entity Activity =
id = Used id

-._| atnbutes startime

endtime

= atiributes

WasGeneratedBy
]
WasAttributedTo
WasAssociatedWith
Agent — L HadMember-
id B
atiributes ~
ActedOnBehalfof

Figure 11 - Extended PROV-DM
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4.2 Data-Aware Discovery

The second step is “Data-Aware Discovery”, whighcdvers a classification
model from the provenance data subset producelebgrevious activity. The idea is to
learn data-aware constraints that are recurrewnihgistent with the instances logged in
the provenance data. Decision tree was choseneadassification model, since it fits
nicely to represent constraint rules. Structurabgch branch in the decision tree
corresponds to a conjunction of data constraints (the form <data
attribute><operator><value>, for examplex*2 AND B <9”) that filters provenance
data. The classification algorithm generates a stlmti tree whose class attribute
indicates whether the workflow instance is sucegssfnot. Figure 12 depicts a generic
decision tree.

4.3  Provenance Data Filtering According to Data-awa Rules

The scientist then chooses a branch according taterest reflected in the class
attribute. Then, in the third step, “Provenancealattering According to Data-aware
Rules”, the constraints are represented by thisdbrare transformed in a set of filters
that are applied in the provenance database thrtheghse of a SQL query, deriving a
new provenance filtered data. For example, theygU®ELECT case, activity name,
start_time FROM activity” is appended with filteWWHERE parameterl>=value AND

parameter2>=value AND parameterN= “value”.

<=Parameter1 Value

==Parameter1 Value <=Parameter1 Value

parameter2

parameter3

=Parameter3 Value

I
]
==Parameter2 Value i
L]

=ParameterN Value

complied
requirements
=ParameterN Value

not complied
reguirements

not complied
requirements

parameter2

I =Parameter2 Value

‘—.

Figure 12 - Generic Decision Tree learned from Pranance Filtered Data
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4.3  Data-Aware Declarative Model Discovery

The last activity is “Data-Aware Declarative ModBliscovery”, which is
responsible for running an algorithm for declaratmodel discovering considering the
provenance filtered data found in third activityn& the declarative model found was
learned based on data filtered from data-awaret@nts, we call it a data-aware
declarative model.

In order to represent data-aware declarative nspdek extended declare
constraint templates, mentioned in section 3.1h wéta-aware constraints. These data-
aware constraints correspond to the decision traech chosen by the user. Table 4
presents the formal semantics of some individudh-davare declare constraints
templates proposed. In the proposed templates, ea&ohstraint <data-
attribute><operator><value> is represented by & teemed cond The conjunction of
several data constrainisnd, ... cond, i <], is represented ascond;. Therefore,

Acond;=cond A cond. A cond

For example/\cond; , init(A), response (A,B)it means that if parameter values of i
to j were satisfied the workflow should start walativity A and activity B occurs
occasionally after A.

The graphical representation for the proposed-aatire declare constraint is
given as a precedent symbol connected to the @ed@agram by an edge labeled

“/Acondi j”. An example using this notation is illustied in Figure 13.

Table 4 - Data-aware Declare constraints

Data-aware constraint Meaning
Acond; ; , init(A) if (cond; A...Acond)) then (start with A)
Acond; ; , precedence(A,B) if (cond; A...Acond)) then

(if B occurs then A occurs before B)

Acond; ; , response(A,B) if (cond; A...Acond)) then
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(if A occurs then eventually B occurs after A)

Acond; ; , succession(A,B)

if (cond; A...Acond)) then

(for A and B both precedence and response hold)

Acond; j , chain

precedence(A,B)

if (cond; A...Acond)) then

(if B occurs then A occurs in the next position before B)

Acond ; , chain response

(A.B)

if (cond; A...Acond)) then

(if A occurs then B occurs in the next position after A)

Acond; j , chain

succession(A,B)

if (cond; A...Acond)) then

(for A and B both chain precedence and chain response
hold)

Acond; ; , co-existence(A,B)

if (cond; A...Acond)) then

(if A occurs then B occurs before or after A and vice
versa)

activityl.parameteri>=value1 A activity2 parameter2<=value2 A activityd.parameterd=value3

co-existence

P B

Figure 13 - Data-aware Declare Diagram.

4.4 Solution Architecture

Our proposal is supported by the technologicahitgcture elements and
artifacts depicted in Figure 14. First, the Prover@aDatabase is created by instantiating
the extended PROV-DM schema in a relational databasnagement system. In
workflow design time, the scientist models the Wik template in the SWfMS
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interface, and includes additional workflow tasks gather user-defined metrics as
provenance data. Then, in workflow execution tiarejnitial set of workflow instances
is executed, populating the provenance databasgatédset is acquired by executing
SQL query with filters, next, a decision tree leagnalgorithm is executed through a
Data Mining Tool in order to discovery a set ofalabnstraints. Finally, the Declarative
Miner Tool for discovering a data-aware declare aetad executed considering the
filtered data found by applying the constraintscdigered. The steps to send data for

Data Mining Tool and Declare Miner Tool is made mnaiy by the user.

Data-aware
Declare Model

SWIMMS Data Mining Declarative Miner
Tool Tool

I |
S

RDBMS

Figure 14 - Solution Architecture
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Chapter 5 — Use Scenarios

In order to measure the accuracy of the data-aweotare model, there are
metrics proposed in BURATTIMNt al. (2012). These conformance metrics evaluates the
degree of healthiness of a process trace andagf,aising indicators such as activation,
fulfillment, violation and conflict for a declarenstraint.

The “Declare Analyzer” plug-in from the ProM framerk was used to quantify
the degree of adherence of each trace in termsirabar of fulfilments and violations
ratio (BURATTIN et al. 2012). These metrics are percentages of violatiamng
fulfillments of the constraints over the total aetions (MAGGlet al, 2013b).

This chapter describes in detail the evaluationoof proposed data-aware
declarative model learned on top of provenance. ddta evaluation consists of two
experiments aiming to observe how precise the coatbimodels are. The first is an
exploratory user scenario data mining experimemt dealuating the potential of

approach. The second was applied on a real scdpagwapotranspiration estimation.

5.1  Wish Detection Experiment

In this section, we present a use scenario of m@tang experiment, specifically
for classifying training algorithms on the task dktecting wishes in tweets
(GONCALVES et al, 2015). The training configuration used the Wisbrglis as
training data and NLTk 3.0 on Python 2.7.1 as thenéwork for the implementation of
the Naive Bayes algorithm. The abstract workflovdépicted in Figure 15 in a BPMN
diagram.

The workflow has eight activities; some of thenthaarying parameters, such
as: “corpus” in activity 1, word length in activig/ and the partition size in activity 6.
Table 5 depicts the activity name, its descriptenmg parameters.
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The modeling and execution of scientific workflow SWfMS was part this
work. The workflow template was modeled and exetutaough the SciCumulus
SWFMS. Provenance data was collected during wovkfexecutions and stored in a
PostgreSQL relational database. The experimentex@suted in a cloud environment,

the Amazon EC2 platform, using Linux instancesg@eserver and micro instances).

I."'_" \ dataset datasel word stop word
- loader tokenization removal removal
c\harl k-fnlldelr text algorithm metric storage
conversion partitioning evaluator

Figure 15 - Wish Detection Workflow

Table 5 — Wish Detection Workflow Activities

Activity Activity Activity Parameter Parameter Domain
no. Name Description Description Data
1 dataset load corpus corpus wish corpus politics,
loader products,
politics_products
2 dataset divide a text into a NA
tokenization | list of sentences, by
using an
unsupervised
algorithm.
3 char convert all word in | NA
conversion lower case
4 word remove word in Iword length of word to be | O-n
removal according to length removal

configured in
parameter lword

5 stop word remove stop NA
removal words, such as:
the, is, at, which,
and on
6 k-folder partition the kfold: 1-n number of fold 1-m
partitioning | database in k- partitioning
folders
7 text mining perform an NA
algorithm algorithm for text
mining
8 metric store metrics of NA
storage workflow instance
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The user-requirements for filtering provenanceadatre set by the scientist as
follows: Precision >0.6 was the chosen metric foalgzing workflow instances.
Therefore, a clause “WHERE metric_name = 'pos-gieni was appended to SQL
query to generate a filter provenance data. Inroimeliscover data-aware constraints,
the Random Tree algorithm from the Weka toolbox (HAet al., 2009) was chosen as

classification learning algorithm. Figure 16 degpitite discovered decision tree.

1: KFolds

/\

<25 =28

_— T

2; Litkord A0; KFolds

/N /N

225 <4

<25 ¥ =43
3L unsucessul 4 Conpus 11: Corpiss 18 unsugcessiul

N TN

= polities_products = pulitics = products = polities_products = palitics = products

& KFalds ‘8 T U tessul 8 unsuscessful 120 KFolds 17 unsugcessful ‘ 18 : susgessful ‘

215 315

<35 =38

8 : unsuecessful T uccesub 13 Lilfard 18 : sunoesstul

/o

14 : sucoessful ‘ 18 : unsucoesstul ‘

Figure 16 Discovered classification tree

The leaves with the class attribute values detdite parameter values achieved.

In this example, the scientist was interested caluating instances with a precision
greater than 0.6, thus one or more three bran@rebe considered:

* /cond;; = kfold<=2.5 and Iword>=2.5 and corpus= “politcsogucts”.

« Acondij= kfold>=1.5 and kfold>=2.5 and lword>=2.5dacorpus= “politcs_products”.

« Acondij = kfold>=2.5 and kfold< 43 and corpus=dgducts”.

e Acondij = kfolds »3.5 and kfolds <43 corpus = “politics_products”

* Acondij= kfolds»3.5 and kfolds<43 and 1lword <5 and corpus =

“policts_products”
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So, each of these conditions was appended to ads@tly in a WHERE clause
for finding the cases that used the selected pdeameAn example of SQL query

considering filters with parameter values is présetelow.

SELECT w.wkfid AS "Case ID",a.tag AS "Activity",
a.starttime AS "Start Timestamp", a.endti$"End Timestamp"
FROM parameter p INNER JOIN hactivity a
ON (p.actid=a.actid)
WHERE kfold <=2.5 AND Iword >=2.5 AND corpus = ‘fitics_products’;

After applying each constraint, the filtered proaece data was sent as input
data to the Declarative Process Mining Tool. Insthise scenario, we adopt
DeclareMiner plug-in (MAGGI et al. 2011) in ProMadloas the declarative process
mining tool.

Due to simplicity for illustration purposes, thetracted model considered only
init, succession, chain succession and co-existeheeare constraints. The 10
discovered data-aware declare constraints areidedan Table 6.

Table 6 - Data-aware Declare Constraints

Rule1
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A
DataSetTraining.corpus=politics_products,
init (“Dataset Training Loader”)
Rule2
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A DataSetTrain-
ing.corpus=politics_products,
chain succession (“Dataset Training Loader”, “Dataset Tokenization”)
Rule3
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A DataSetTrain-
ing.corpus=politics_products,
chain succession (“Dataset Training Tokenization”, “Dataset Training Char Conversion”)
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Rule4
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A DataSetTrain-
ing.corpus=politics_products,
chain succession (“Dataset Training Char Conversion”,“Dataset Training Word
Removal”)
Rule5
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A DataSetTrain-
ing.corpus=politics_products,
succession (“Dataset Training Word Removal”,“Dataset Training Special Word
Removal”)
Rule6
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A DataSetTrain-
ing.corpus=politics_products,
succession (“Dataset Training Word Removal”,“Dataset Training Stop Word Removal”)
Rule?7
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A DataSetTrain-
ing.corpus=politics_products,
co-existence (“Dataset Training Special Word Removal”,“Dataset Training Stop Word
Removal”)
Rule8
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A DataSetTrain-
ing.corpus=politics_products,
succession (“Dataset Training Special Word Removal”,“Dataset Training KFolder
Partitioner)
Rule9
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A DataSetTrain-
ing.corpus=politics_products,
succession (“Dataset Training StopWord Removal”,“Dataset Training KFolder Partitioner
Rule10
DataSetKFolderPartitioner.kfold>=3.5 A DataSetWordRemoval.lword< 5 A DataSetTrain-
ing.corpus=politics_products,
chain succession (“Dataset Training KFolder Partitioner”, “Naive-Bayes Evaluator”)

The learned data-aware declarative model preskntsvledge combining
constraints on events flow and activities paransetBrgure 17 depicts the extracted
model (considering only init; chain succession; cgssion; and co-existence

constraints) and with data conditions.
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5.2  Result analysis

Some of the learned rules may represent common ledge to the scientist
(such as the pattern that “Dataset Training Loadethe initial activity and “Dataset
Tokenization” activity only occurs after “Data-sBtaining Loader” activity, meaning
that dataset tokenization should always successtsloader). Other rule is that after
“Dataset Training Word Removal”, the scientist @ther execute “Dataset Training
Special Word Removal” or “Dataset Training Stop Wdremoval’,i.e., these two
activities occur after “Dataset Training Word Reraldythese activities co-exist in the
workflow, i.e., the “Dataset Training Special Word Removal” \tyi can take place
before or after “Dataset Training Stop Word Remgvtilere is no difference in the
expected result.

Thus, in order to meet user requirements, thensstecan follow the rules
represented in the combined modea, workflows should be modeled according to the
events flow and to the set of parameters kfold>=3/5.lword< 5 A
corpus=politics.products.

The proposed approach was also applied to discbeettata-aware declare rules
that lead to unsuccessful scenarios. We chose rtecty that does not meet user
requirements. With the data-aware constraints kfbld /A Ilword>=2.5 A
corpus=politics_products the extracted model @aled in Figure 18, we can observe
that event flow and declare constraints differ witempared to the model found in
successful scenarios (Figure 17). The scientist amayyze the rules represented in the
combined model and realize that some activities liRataSetTrainingStopRemoval”

are missing.
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5.3  Evapotranspiration Experiment

In this section, we present an experiment of aspetranspiration estimation
scenario. Evapotranspiration is the sum of wateperation from the soil with the
transpiration from vegetation which returns to at@osphere in vapor form. The values
of evapotranspiration are important in agricultegpecially in soil irrigation activities.
Thus, the availability of evapotranspiration valadlews a better planning of the water
amount to be irrigated and thus minimize resouress and environmental impacts.
However, the direct measurement of evapotranspiras difficult and costly, since it
requires facilities and special equipments. Thire tise of knowledge discovery
techniques was used in this scientific experim¥A\(IER et al, 2015).

The experiment was done with weather data and sthdh& some specific
parameter values combinations presented bettetgeguen compared to historical data
of the estimated evapotranspiration. The data wdsaaed from Meteorological
Database for Education and Research (BDMEP) ofoNatilnstitute of Meteorology of
Brazil (INMET). This database has had historicaiese of weather data for several
locations in Brazil since 2006, collected througkasuring stations. These historical
series contain data evapotranspiration, which weetl as input data for the learning
algorithms. This datasets have the variables: vépded average, high speed wind
average, piche evaporation, potential evapotraaispir, total insolation, cloudiness
average, total precipitation, medium pressure, maril temperature average,
compensated temperature average, minimum temperaftterage, relative humidity
average. The scientist applied a linear regres®ohnique to measure the degree of
precision between the historical values and theaiesalobtained by the parameter
combination. The coefficient of determination, atsdled R?, is a linear approximation
of the general statistical model. R? varies betw@eamd 1, indicating the percentage of
the observed values that is consistent with thenéshmodel (XAVIERet al, 2015).

The workflow has six activities (Table 7); some tfem with varying
parameters, such as: “dataset” in activity 1, ifadtie filter” in activity 2, “class” to be
clean in activity 3, and “mining algorithm” in aeiy 4. The *“coefficient of
determination” is calculated in correlation compadgvity.

The modeling of scientific workflow in SWfMS wasag this work. The
workflow template was specified and executed thhotlng SciCumulus SWfMS on top
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of the Amazon EC2 cloud environment, using Linugtamces (large server and micro
instances). In this parallel environment, the dts¢nook advantage of the parameter
sweeper function of SciCumulus (OLIVEIR al 2010), generating more than 15,000

combination executed in 2000 workflow instancesovBnance data was collected

during workflow executions and stored in a Post@e$elational database.

Table 7 - Evapotranspiration Workflow Activities

Activity Activity Activity Parameter Parameter Data
no. Name Description Description Domain
1 Dataset load data of dataset station name nominal (34 stations
Loader station to be load of Brazilian state
Bahia and Rio de
Janeiro)
2 Attribute remove attril, range of attributel: 1to 5,
Filter variables attr2 attributes that 7to0 19
will be attribute2: 2-6,
removed 8-20
3 Data Clean | clean the class class to be 7
variable to be analyzed
analyzed
4 Data perform data | algorithm | algorithm bagging,
Mining mining name decisionstump,
activity gaussianprocesses,
m5p,
multilayerperceptron,
paceregression,
reptree,
rbfnetwork
5 Correlation | compute the | NA
Compute correlation
measure
6 Metric store the NA
Storage metric of
workflow
instance

The user-requirements for filtering provenanceadatre set by the scientist as
follows: “correlation >0.9” was the chosen metriz finalyzing workflow instances. In
order to discover data-aware constraints, we agptiee J48 algorithm as the
classification learning algorithm due this algomittpresent a tree more pruned than
Random Tree algorithm, from Weka toolbox (HAEL al, 2009). Figure 19 shows the
branches in classification tree with parameters$ thuede the experiment to meet the
metric "correlation >0.9".

After applying each constraint, the filtered proaece data was sent as input

data to the Declarative Process Mining Tool. Insthise scenario, we adopt
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DeclareMiner plug-in (MAGGI et al. 2011) in ProMadloas the declarative process
mining tool.

Due to simplicity for illustration purposes, thetracted model considered only
init, chain succession and co-existence declarestrints. The learned data-aware
declarative model presents knowledge combining tcaimés on events flow and
activities parameters. Figure 20 depicts the etdtchmodel (considering only init; chain

succession; succession; and co-existence conshramd with data conditions.

5.4 Result analysis

This learned data-aware declarative model (Fig®@) informs that
“DatasetLoader” or “AttributeFilter” are the irali activities, i.e., the past execution of
experiments started sometimes with “DatasetLoadmativity or other times with
“AttributeFilter” activity. More over, the constras “chain succession’said that the
tasks “DatasetLoader”, “AtributeFilter”, “DataCléan“DataMining”, “Correlation
Compute”, “Metric Storage” happen in chain.

The scientist sometimes executed “M5P” activitgtéad of “DataMining”
activity. In “DataMining” activity is possible varthe algorithm like parameter, but in
“M5P” the algorithm is not a parameter, actuallyistactivity implement in code the
algorithm m5p as fixed. The constramdt co-existence(DataMining, M5H)form that
the activities do not occurs at same workflow instaand using one or other the
experiment combined with data-aware constraints rtiet pre-defined metric
"correlation >0.9".

A not expected activity “EvVPEstimation” was diseod in provenance data “.
This activity is a program not modularized that @xe all activity: “DatasetLoader”,
“AtributeFilter”, “DataClean”, “DataMining”, “Corr&ation Compute”, “Metric Storage”
in a unigue code. The constraimbt co-existence(EvPEstimation, DatasetLoadgr),
means that was performed “EvPEstimation” activity@atasetLoader” activity.

The data-aware constraints show the combinatainparameters that were
performed combined with declarative constrainthéwe a workflow execution with
correlation > 0.9. The rule dataset= rj* " attrl<xattr2= ~ class = 7 " algorithm =
“bagging” informs that if you combine discovereectare constraints with any station
data of state of Rio de Janeiro; with other patamseattrl= 1 or attl= 2; any value de
attr2 (2-6 or 8-20); class=7; and algorithm= “bamggji you will the expected result. If
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you want use station data of state of Bahia, wednelkoose other parameter
combination like »  dataset= A attrl<=2 N attr2=class = 7 ~ algorithm =
“paceregression”. Below following the other dat@age constraints discovered.

dataset=rj* A attrl<=2 A attr2= A class = 7 ” algorithm = “bagging”

dataset= A~ attrl<=2 ” attr2= ~ class = 7 A algorithm = “paceregression”

dataset=rj* ~attrl<=2 A attr2 A class =7 » algorithm = “multilayerperceptron”

dataset= Aattrl<=2 A attr2 A class =7 * algorithm = “gaussianprocesses”

dataset=rj* Aattrl<=2 A attr2 A class = 7 » algorithm = “reptree”

dataset= A attrl<=2 " attr2 ~ class =7 » algorithm = “m5p”

dataset= ~ attrl=3 ~ attr2=4 * class =7 ” algorithm = “paceregression”

dataset= A (attrl> 3 A attrl<=5) ~ attr2=5 * class = 7 * algorithm = “paceregression”
dataset=rj* A attrl =9 /A (attr2>11 » attr2<=17) A class = 7 » algorithm = “paceregression”
dataset=rj* A attrl=10 ~ (attr2>16 » attr2<=17) ~ class = 7 ~ algorithm = “paceregression”
dataset=rj* A attrl=11 A (attr2>11 A attr2<=17) A class = 7 » algorithm = “paceregression”
dataset=rj* A (attrl>2 A attrl<=6) ” attr2<=17 A class = 7 » algorithm = “gaussianprocesses”
dataset=rj* 2 attrl >8 M attr2<=17 A class = 7 ” algorithm = “gaussianprocesses”

dataset=rj* A attrl>16 ~ attr2>17 A class = 7 » algorithm = “gaussianprocesses”

To receive a feedback from a scientist responsible Evapotranspiration
experiment, we elaborate some questions to vefritlaia-aware declarative model is
useful to him for a research team. The data-awactachtive model (figure 20) and a
declarative model with same declare constraint prasented to a scientist for he was
able to answer the questions. Although, we undedsthat it will be necessary make a
survey with a more comprehensive scientist grous possible to verify in this user
scenario that the learned data-aware declarativdehqrovides useful information to
scientist plan new scenarios of experiments andespeevious scientific knowledge.
The scientist said that “the data-aware declaratisdel shows me what scenarios have
been assessed, enabling new scenarios to evaluataelidate the scenarios already
executed".

The answered questions are listed below. The tbgeanswers were marked
with X.

* Question 1: Do you think that the learned data-awiaclarative model gives

you relevant information?

50



(X) Strong Agree

( )Agree.

( ) Disagree.

( ) Strong Disagree.

Question 2: Do you think that the learned data-awd@clarative model is
more accurate than learned declarative model ?

( ) Strong Agree

(X) Agree

() Disagree

() Strong Disagree

Question 3 - Do you think that the learned datarawlaclarative model is
important to share knowledge in scientific learnpmgcess?

( ) Strong Agree

(X) Agree

( ) Disagree

( ) Strong Disagree

Question 4 - Do you think that the learned datarawlaclarative model can
support you fine-tune your experiment ?

(X) Strong Agree

( ) Agree

( ) Disagree

( ) Strong Disagree

Question 5 - Do you think that the learned datarawiaclarative model
gives you insight to plan new scenarios of expeniale?

(X) Strong Agree

( ) Agree

( ) Disagree

( ) Strong Disagree

Question 6- What relevant information or insigha ttata-aware declarative
model gives you? (open question)

- The data-aware declarative model shows me wiegiasios have been
assessed, enabling new scenarios to evaluateidateathe scenarios already

executed.
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5.5 Experiments Evaluation

We evaluated the approach with provenance datarged in both use scenarios
described in Sections 5.1 and 5.3. The Declare yislplug-in (BURATTIN et al.,
2012) was applied for analyzing the discovered -datare declare models resulted
from our approach, and to compare it with the tradal declare model (with no data
constraints). Both models were compared againsptbeenance data log, in order to
report the metrics. We adopted the metrics: fatidhts ratio and violation ratio
(BURATTIN, 2012) to evaluate the experiments.

The extracted log from the first experiment comeai 990 workflow instances,
and three data attributes (corpus, |-word and #)fdlVhile, the extracted log from the
second experiment contained 2000 workflow instan@esd three data attributes
(dataset, attrl, attr2, class, mining). Table 8 @stiow the evaluation metrics (averages
of violation ratio and averages of fulfillments icgt of both experiments for each
individual discovered constraint (“init”, “chain stession”, “succession”, “co-
existence”, “not co-existence”), as well as fordaiicovered constraints.

Comparing the metrics for both models, we notlta the average fulfillment
ratio increased in the data-aware model; this atég that, in this particular case, the
learned data-ware declare model was more accuMate over, in second experiment,
it is possible to verify that without the data-aevazonditions the constraint chain

succession was not discovered, omitting an impontdéiormation in learned model.

Table 8 - No. of violation and fulfillment ratio of the wish detection experiment

Constraints Avg. Avg. Fulfillment Avg. Avg. Fulfillment
Violation Ratio Violation Ratio
Ratio Ratio
Traditional declarative model data-aware declarative model
init 0.046 0.9540 0.0339 0.9661
chain succession 0.1606 0.8394 0.1218 0.8782
succession 0.1138 0.8862 0.0734 0.9266
co-existence 0.1081 0.8919 0.0366 0.9634
all constraints 0.2105 0.7895 0.1445 0.8555
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Table 9 - No. of violation and fulfillment ratio of the evapotranspiration estimation

experiment
Constraints Avg. Avg. Fulfillment Avg. Avg. Fulfillment
Violation Ratio Violation Ratio
Ratio Ratio
Traditional declarative model data-aware declarative model
init 1 0 0.5473 0.4527
chain succession - - 0.1297 0.8703
succession 0.2001 0.7999 0.1292 0.8708
not co-existence 0.2573 0.7427 0.0834 0.9166
all constraints 0.3989 0.601M 0.2936 0.7064
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Chapter 6 — Related Works

The approach presented in (MAGE&t al, 2013) is related to ours from the
perspective that both combine declarative modéeh wata-aware model, this one also
through classification algorithm and declare midowever, firstly, it is discovered a
declarative constraints and then they are assdcddta-attributes. This approach may
lead to an inconsistent declarative model, becadmsn it was selected a data attribute,
the sub-set is not the same that was used as fimpdiscovering the model. This issue
does not happen with our proposal, because theddatata-aware rules are applied to
learn a declare model.

While, KNUPLESCHet al. (2013) proposes extensions for visual compliance
rule based on Compliance Rule Graph (CRG) languagsupport data, time, and
resource perspectives for business processes,hisutapproach does not combine
discovered models.

Another work (MOORE et al., 2013) proposes a datile language for
processing provenance data. While the approachopeapin (BOWERS et al. 2012)
infers data dependencies from workflow executiacds based on explicit user-defined
rules, they propose a high-level language for esging dependency rules that are
converted in relational queries.

Although the above-mentioned approaches can bé tesémprove scientific
workflows using data provenance, our approach difence a data-aware declarative

model, that represents a workflow instance baseasenrequirements, is discovery.
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Chapter 7 — Concluding Remarks

Provenance data is an important part of scientvickflows, because it assists
scientists on managing, understanding and reproduitieir experiments (GIL et al.
2007). However, the amount of provenance data ge&rbrfrom scientific workflow
executions grows exponentially through time, becmminfeasible for scientists to
manually analyze its content. Thus, mechanisms efxiracting and representing
knowledge implicit in provenance data are demandifge use of data mining
techniques is a way of automatically discoveringfulsknowledge from provenance
data and presenting it to the scientist in orderfatilitate the analysis of his/her
scientific experiment. In this research we presentpproach that combines two data
mining techniques. The first learns data-aware traimés through a decision tree
learning algorithm and the second learns declarestcaints through ProM declare
miner. Therefore, our approach learns a data-adeckarative model in the context of
scientific experiments based on use of processngiteéchniques for learning data-
aware declarative models on top of scientific wiak provenance data.

This model provides operational support for impngvunderstandability of the
scientific experimente.g, a valuable insight for scientist in understandihg main
characteristics of his/her data mining experimemat tled to successful (or to
unsuccessful) workflow scenarios, in planning fatexecutionsi.e., which event flow
should be used and which parameter values of #wtivities. Furthermore, it can be
used to conformance checking of semantic-based flearkactivities, e.g, if quality
metrics for assessing the workflow result were wWaked and recorded in a database.
Specifically, our approach automatically learnsagaeaware declarative model that is
more precise with respective to the subset of pramee data it represents. This
precision increases more the reliability in infotima to be used in the scientific

learning process.
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Our approach was evaluated on a data mining sficeekiperiment scenario and
an evapotranspiration estimation experiment, shguhiat it is possible to combine the
two perspectives of constraints in a unique view.

Some limitations were identified in our reseammong them we can mention:

* It is necessary have an enough amount of qualfieckflow instances. If not,
the learned model may not be more accurate.

* Should have trials with different parameters valigesiecision tree discovery.

* The parameters of workflow activities cannot besfged in unstructured data.

e The research team must have familiarity with detiae language.

* Some parts of learning process are error prone.

Time limitations prevented us from fully automatirthe learning process.
Therefore, we propose, as future work, a plug-inplementing in ProM tool.
Additionally, more quantitative analysis of the apgch to be conducted considering
other experiments. Also, an investigation with ottheclarative languages, such as DCR
Graph (Dynamic Condition Response Graphs). Finallgurvey with a comprehensive
scientist group will be useful to qualitative ars$ythe data-aware declarative model in

scientific workflow scenarios.
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